
Abstract. – OBJECTIVE: We studied the
mechanisms of protective effects of propofol
on ketamine-induced damage to neonatal cog-
nitive function. 

MATERIALS AND METHODS: We utilized a rat
model of ketamine anaesthesia. Eighty neonatal
rats (7 days after birth) were divided into four
groups: normal saline group, ketamine group,
and low- and high-dose propofol combined with
ketamine groups. Six hours after anaesthesia,
we obtained hippocampal tissue, and quantified
apoptotic index and total protein concentration,
and assessed global proteomics changes in-
duced by two tested drugs. The latter changes
were documented by two-dimensional elec-
trophoresis and matrix-assisted laser desorp-
tion/ ionization time of flight mass spectrometry.
To evaluate cognitive functions, water maze test
was applied after animals grew for 21 days. We
further repeated proteomics studies at 21 days
post-anaesthesia.

RESULTS: Ketamine markedly up-regulated
apoptotic index and decreased total protein
concentration. Propofol dose-dependently re-
verted these adverse changes. Six hours post-
anaesthesia, combined propofol and ketamine
administration up-regulated the following pro-
teins in the hippocampus: PD1A3, NDUFB10,
HSPA8, ATP5JD, and PSMA1. Furthermore, the
following proteins were down-regulated: PPIA,
PKM2, GFAP, NSE, PPIA, PKM2, and GFAP. Af-
ter 21 days, animals treated with ketamine
showed marked disturbances in cognitive func-
tion as demonstrated by increased time of the
water maze test, whereas propofol diminished
these changes. In addition, expression of pro-
teins largely normalized in propofol-treated ani-
mals, with only two up-regulated proteins
(FUBP3 and PRDX5) and three down-regulated
proteins (GAPDH, AKR1A1, and VCP). 

CONCLUSIONS: Adverse effects of ketamine
on cognitive function are reverted by propofol,
also through beneficial effects on protein ex-
pression in the hippocampus.
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Introduction

Ketamine is an intravenous anaesthetic with
strong analgesic effects and light respiratory inhi-
bition1-3. It is usually administered to paediatric
patients or for basal general anaesthesia4-6. Propo-
fol is usually administered as a hypnotic/amnestic
agent with rapid action, no accumulation and
complete revival7-10. Ketamine can cause brain in-
jury in the developmental phase and cause cogni-
tive dysfunction. Propofol, on the other hand,
possesses brain-protective effects. With propofol,
post-operative recovery is fast, and it can allevi-
ate the ketamine injury to neonatal neurons and
decrease the damage to cognitive function. Spe-
cific mechanisms of this protective effect are not
clear11-15. Here, we used a proteomics approach to
evaluate the changes in the hippocampal tissue af-
ter ketamine anaesthesia in neonatal rats, with or
without co-administration of propofol.

Materials and Methods

Animals
Eighty 7 days old male and female SD rats

were used in this study. Their body weight
ranged from 13 to 19 grams. The rats were SPF
grade animals.

Equipment
Inverted phase contrast microscope, solid phase

pH gradient isoelectric focusing apparatus, ET-
TAN ImageMaster 2D Elite 4.01 gel image analy-
sis software (GE Healthcare, Amersham, UK),
and matrix-assisted laser desorption/ionization
time of flight mass spectrometry (MALDI-TOF)
fingerprint detection system were from Amersham
Pharmacia Biotech (Tokyo, Japan). The apoptosis
kit was purchased from Beijing CellChip Bio-
technology Co., Ltd. (Beijing, China). The Morris
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The 2D Quant protein quantification kit was
used to assess protein concentration. Proteins
were separated using 2D gel electrophoresis, and
MALDI-TOF fingerprint detection system, data-
base searches, and Western blot analyses were
used to identify differentially expressed proteins.

Statistical Analysis
Data were analyzed using SPSS16.0 (SPSS

Inc., Chicago, IL, USA). Numerical data were
presented as mean ± SD and analyzed by the t-
test. Animal groups were compared with the one-
way ANOVA analysis and LSD test. The p <
0.05 was considered as statistically significant.

Results

Apoptosis of Hippocampal Neurons
Apoptotosis index of hippocampal neurons in

the group treated with normal saline was 3.71 ±
2.12%. Treatment with ketamine significantly in-
creased the number of apoptotic cells (14.98 ±
5.65%, p < 0.01 vs. normal saline group; Table
I). Propofol dose-dependently decreased cell
apoptosis caused by ketamine (Table I).

Protein Concentration 
in Hippocampal Tissue

Treatment with ketamine significantly de-
creased protein concentration in hippocampal tis-
sue compared with treatment with normal saline
(Table II). However, treatment with propofol
dose-dependently abrogated damaging effects of
ketamine (Table II).

Modulation of Protein Expression by
Treatment with Propofol in Combination
with Ketamine

To detect global protein changes, we used a
proteomics approach and evaluated expression of
hippocampal proteins at the time point of 6 hours
post-anaesthesia (Table III). There were up-regu-

water maze was made by Chengdu Taimeng
Technology Co. (Chengdu, China).

Study Groups
Rats were divided into the following four

groups: (1) animals treated with normal saline
group, (2) animals that received ketamine, and (3
and 4) animals that received low- or high-dose
propofol along with ketamine. Each group com-
prised 20 animals. Ketamine and propofol were
used at 80 mg/kg weight. Both anaesthetics were
administered by intraperitoneal injection: 0.5 ml
propofol and 1 ml ketamine were given to ani-
mals in the low-dose group, whereas animals in
the high-dose group received 1 ml of propofol
and 1 ml of ketamine. Animals in the normal
saline group received an intraperitoneal injection
of 1 ml of normal saline. The drugs were admin-
istered 3 times every 2 hours. Ten rats were ran-
domly selected from each group for the collec-
tion of brain tissue 6 hours after the anaesthesia.
The remaining animals were kept for 21 days af-
ter anaesthesia to conduct the water maze test.
These rats were then euthanized for collection of
brain tissue. This study received the animal
ethics approval from the Ethics Committee.

Specimens and Outcomes
The cortex was separated, and the hippocam-

pus was collected for paraffin embedding. Paraf-
fin sections were prepared. Neuron apoptosis
was detected according to the protocol of the as-
say kit. Cell apoptosis detection kit was used to
detect the apoptosis of hippocampus neurons.

In other 10 rats, hippocampus proteins were pre-
pared as follows. Fresh brain tissue was collected,
and the cortex and hippocampus were rapidly sep-
arated. The tissue was washed with distilled water,
and excess fluid was absorbed using a filter paper.
Tissue specimens were preserved in liquid nitrogen
and subsequently homogenized at low tempera-
ture. Total proteins were extracted with lysis buffer
and kept at -80º C pending analyses.
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Number of animals Apoptosis index

Normal saline group 10 3.71 ± 2.12
Ketamine group 10 14.98 ± 5.65*

Low-dose propofol + ketamine group 10 10.23 ± 4.82*#

High-dose propofol + ketamine group 10 6.79 ± 6.48*#

Table I. Apoptosis of hippocampal neuronal cells.

Data are mean ± SD. p < 0.05 vs. normal saline group *p < 0.01 vs. normal saline group; #p < 0.05 vs. ketamine group.



memory functions20-23. Ketamine can also cause
brain damage by inducing apoptosis in neural
cells, and this contributes to the damage of short-
term and long-term cognitive functions24. Ketam-
ine can be applied independently or combined
with other anesthetics. Because it has respiratory
inhibition, respiration stimulant is not recomm-
ended. Ketamine is not recommended during the
operation on pharynx, larynx or bronchus, and
muscle relaxant must be administered. Ketamine
has some adverse effects (hallucinogen, schrute
dependence, etc.) which act through the inhibi-
tion of NMDA receptor, and propofol can atte-
nuate these effects. Thus, to reduce the adverse
effects, the stimulus must be avoided, and short-
term effect barbital can be administered. Propo-
fol can inhibit up-regulation of caspase-3 in-
duced by ketamine and, thereby, block the keta-
mine-induced neuron apoptosis25. Propofol fur-
ther decreases the cerebral metabolic rate of oxy-
gen and intracranial pressure, diminishes lipid
peroxidation, blocks the transduction pathway of
glutamic acid, inhibits calcium overload, pre-
vents the cell injury26, and reduces free radical
formation27. 

In our study, we observed that young animals
exposed to ketamine anaesthesia exhibited in-
creased apoptosis indexes in hippocampal tissue.
This significantly affected the cognitive function
of these animals, as demonstrated by the water
maze test. However, these adverse effects of ket-
amine were reverted by co-administration of
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lated proteins including PD1A3, NDUFB10,
HSPA8, ATP5JD, and PSMA1, as well as down-
regulated proteins (PPIA, PKM2, GFAP, NSE,
PPIA, PKM2 and GFAP). Proteomics changes
on day 21 post-anaesthesia were more modest
and included up-regulation of FUBP3 and
PRDX5, and down-regulation of GAPDH,
AKR1A1 and VCP (Table III).

Water Maze Test
The next test assessed changes in cognitive

function in study animals. We observed that ani-
mals that were exposed to ketamine anaesthesia
showed a significantly increased time of crossing
the annulus compared with animals exposed to
normal saline (Table IV). These negative effects
of ketamine anaesthesia were reverted by propo-
fol (Table IV), such that the parameters in both
propofol-treated groups became comparable to
those in the normal saline group.

Discussion

The hippocampus is the brain region partici-
pating in cognitive function 16-19. Ketamine is the
non-competitive antagonist of N-methyl-D-
aspartate (NMDA) receptor which is mostly ex-
pressed in the brain cortex and hippocampus.
Ketamine affects the NMDA receptor-mediated
CaMKs-ERK-EIKI/CREB-LTP signaling path-
way, thereby negatively modulating learning and

Number of animals Protein concentration 
in the hippocampus (µg/µl)

Normal saline group 10 2.11 ± 0.32
Ketamine group 10 1.78  ± 0.28*

Low-dose propofol + ketamine group 10 1.88 ± 0.27
High-dose propofol + ketamine group 10 1.93 ± 0.21

Table II. Protein concentration in hippocampus tissue.

Data are mean ± SD. *p < 0.05 vs. normal saline group.

Time post-anaesthesia Up-regulated proteins Down-regulated proteins

6 hours PD1A3, NDUFB10, HSPA8, ATP5JD, PPIA, PKM2, GFAP, NSE, SYN1
PSMA1, isoform-CRA -c

21 days FUBP3, PRDX5 GAPDH, AKR1A1, VCP, TUBULIN A1 B

Table III. Changes in protein expression induced by propofol in combination with ketamine.



Conclusions

Adverse effects of ketamine on cognitive
function are reverted by propofol, also through
beneficial effects on protein expression in the
hippocampus.
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Time to cross 
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Table IV. Water maze test.

Footnote: Data are mean ± SD. *p < 0.01 vs. normal saline group; #p < 0.05 vs. ketamine group; ¶p < 0.5 vs. low-dose
propofol + ketamine group. 
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