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Abstract. – OBJECTIVE: Caffeine is one of 
the most commonly used stimulants among 
pregnant women. Human and animal studies 
have shown that prenatal caffeine exposure af-
fects fetal brain development and results in per-
sistent cognitive deficits in offspring. Studies 
have found that caffeine consumption during 
pregnancy may alter many activities that are 
ultimately associated with cognitive dysfunc-
tion in offspring. Despite these important find-
ings, there is a fundamental gap in understand-
ing the mechanism underlying cognitive impair-
ment due to prenatal caffeine exposure. Filling 
this knowledge gap would provide further in-
sights into caffeine-mediated cognitive dysfunc-
tion. The objective of this review was to evalu-
ate the findings of studies showing that prenatal 
caffeine exposure induces cognitive dysfunc-
tion and the potential underlying mechanisms. 
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Introduction

Caffeine has been used as a stimulant, as well 
as for medical purposes for thousands of years. To 
date, there are several sources of caffeine, includ-
ing tea, coffee, and caffeinated drinks. Children 
of mothers who consume caffeine during preg-
nancy are at higher risk of severe adverse health 
effects1,2. Specifically, chronic neurobehavioral 
changes, such as learning and memory deficits 
and impaired social development, have been 
linked to caffeine exposure during pregnancy. 
Studies have demonstrated a strong correlation 
between maternal use of caffeine and cognitive 
deficits in young children3,4. These findings have 
been confirmed by animal studies3.

Several lines of evidence have demonstrated 
neurobehavioral alterations in children of wom-
en who consumed caffeine during pregnancy3,5. 
Caffeine intake exogenously activates adenosine 

receptors in the brain6, which alter the action of 
several other neurotransmitters such as gluta-
matergic, dopaminergic, and serotonergic neu-
rotransmitters7-10. Chronic exposure of the ade-
nosine receptors to caffeine could potentially lead 
to chronic suppression of neuronal plasticity in 
the hippocampus, as well as the neighboring brain 
regions and reduced cognitive function. These 
findings indicate that the alteration of adenosine 
receptors by caffeine has a functional role in syn-
aptic plasticity processes and plays an important 
role in the cognitive impairment of offspring.

Caffeine is a neuromodulator and is similar in 
structure to adenosine (Figure 1), which is pro-
duced primarily from ATP metabolism and its 
formation is dependent on the relative rates of 
ATP breakdown and synthesis11. There are four 
types of adenosine receptors, A1, A2A, A2B and A3, 
and all of these receptors belong to the superfam-
ily of G-protein-coupled receptors12. This class of 
receptors comprises seven transmembrane α-he-
lical structures, of which the extracellular and 
intracellular structures are the amino-terminus 
and carboxy-terminus, respectively13. Adenosine 
receptors are classified based on their differences 
in coupling to adenylyl cyclase to regulate cyclic 
AMP levels. The A1 and A3 adenosine receptors 
are coupled to inhibitory Gi/o proteins, whereas 
A2A and A2B adenosine receptors are coupled to 
stimulatory Gs proteins. At low doses, caffeine 
blocks the A1 and A2A adenosine receptors14.

Both the A1 and A2A adenosine receptors are 
highly expressed in the central nervous system and 
are believed to play a major role in neurodevel-
opment and cognitive function15,16. Adenosine A1 
receptors are predominantly expressed in the hip-
pocampus, cortex, cerebellum, and hypothalamus 
17-19, whereas the A2A subtype is present in the stria-
tum and nucleus accumbens20. Adenosine receptor 
activation appears to inhibit the release of many 
neurotransmitters in the central nervous system19. 
Adenosine A1 receptor agonists have been shown 
to inhibit the release of glutamate21-23, serotonin24, 
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acetylcholine25,26, noradrenaline27, and dopamine28 
in animal models. Caffeine acts as an adenosine re-
ceptor antagonist; therefore, it enhances the release 
of various neurotransmitters. For example, caffeine 
has been linked to behavior modulation through its 
inhibitory effects on other neurotransmitters6. 

Adenosine receptors are abundantly expressed 
in the hippocampus29. Some of the G-proteins ex-
pressed earliest during the embryonic stage are A1 
receptors30,31. Caffeine is believed to regulate synap-
tic plasticity and memory formation in the hippo-
campus32. The regulatory role of caffeine in neuro-
nal circuit development and synapse formation can 
be impaired by chronic caffeine exposure during 
fetal development33,34. During early development, 
caffeine exposure appears to result in alterations of 
the neuronal morphology of certain brain regions, 
including decreased neuronal area of the hippocam-
pal and cortical neurons35. Chronic exposure to caf-
feine significantly decreases the levels of synaptic 
plasticity by modulating adenosine receptors36. 

Both clinical and experimental studies have 
demonstrated that prenatal caffeine exposure in-
duces memory impairment3. However, the exact 
etiology of this impairment is still not fully un-
derstood. In this review, we discuss the potential 
mechanisms behind memory impairment in the 
children of mothers consuming caffeine.

Prenatal caffeine exposure 
and adenosine receptors

Adenosine receptors play an important role in the 
regulation of memory function. Some studies15,37,38 
have reported that the alteration of adenosine recep-
tor expression in transgenic animals impairs memory 
function. Overexpression of the adenosine A2A recep-
tor resulted in impairment of performance in novel 

object recognition tasks39. In addition, knockout of 
adenosine A1 receptors did not affect performance in 
spatial memory tasks; however, habituation was slow, 
and long-term potentiation and paired-pulse facilita-
tion in the hippocampus was impaired40. Therefore, 
prenatal caffeine exposure chronically altered ade-
nosine receptor expression in offspring, which may 
be one of the potential mechanisms underlying the 
cognitive dysfunction caused by caffeine. 

Prenatal caffeine exposure 
and behavioral tasks

Behavioral tests such as novel object recogni-
tion, the Morris water maze task, and the radial 
arm maze task are commonly used approaches 
to evaluate cognitive function41. Several lines of 
evidence demonstrate that alterations in behavior-
al tests can be classified as cognitive deficits42,43. 
Prenatal caffeine exposure has been shown to be 
associated with memory impairment in animals 
in the novel object recognition task. However, in 
the water maze task, the caffeine-treated animals 
found the platform faster. This result is probably 
due to the development of stress or anxiety, as re-
ported by previous studies3,44,45. In the radial arm 
maze task, the caffeine-treated animals exhibit-
ed memory impairment, and the caffeine-treat-
ed animals’ performance demonstrates that the 
caffeine‑treated animals had significantly more 
references and working memory errors than the 
control animals. These results indicate that pre-
natal caffeine exposure alters brain development 
and thus affects memory function in adults.

Prenatal caffeine exposure 
and protein kinases

Protein kinases play an important role in reg-
ulating cellular function. They have essential 
functions in proliferation, signal transduction, 
metabolism, and apoptosis46-48. In the brain, these 
enzymes regulate general brain function as well 
as memory formation and synaptic plasticity49-51. 
For instance, the PI3K/Akt pathway regulates cell 
survival and is involved in receptor and transporter 
trafficking to the cell surface. It also regulates oth-
er proteins that function as transcriptional factors, 
which enhance gene transcription. In addition, the 
brain-derived neurotrophic factor (BDNF) plays a 
role in regulating memory function by activating 
tropomyosin receptor kinase B (TrkB) receptors52. 

Figure 1. Chemical structure of caffeine.
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The BDNF is reported to be involved in glutamate 
receptor trafficking53. Therefore, alterations in 
BDNF expression lead to memory impairment and 
reduce synaptic plasticity54. 

In addition, the cAMP response element-bind-
ing protein (CREB) mediates protein synthesis, 
which is important for neurogenesis, synaptic plas-
ticity, and memory formation55. Notably, CREB 
is elevated in tumor cells and thus increases cell 
division56. In addition, CREB phosphorylation is 
increased during memory formation57. CREB has 
been shown to be downregulated under oxidative 
stress in both the hippocampus and cortical areas 
of the brain, which impairs memory function58. 
Therefore, alterations in CREB expression or phos-
phorylation change cognitive function59.

Interestingly, a recent report showed that CREB 
and BDNF expression is reduced in the offspring of 
rats exposed to prenatal caffeine4, which is shown 
to be one of the mechanisms by which prenatal caf-
feine exposure causes memory dysfunction.

Effect of prenatal caffeine exposure 
on heart development and function

Heart failure is a major health problem, and it is 
caused by blood flow deficiency to the rest of the 
body, including the brain, which results in hypoxia60. 
Shortage of brain oxygenation alters brain functions 
as well as learning and memory processes61. Pre-
natal caffeine exposure has been shown to change 
cognitive function, and studies have shown that the 
children of mothers taking caffeine during pregnan-
cy have a lower Intelligence Quotient (IQ)62. Cogni-
tive impairment is one of the most common chronic 
conditions in heart failure patients63. The reported 
occurrence of cognitive impairment with heart fail-
ure shows a wide range from 25% to about 70%64,65. 
In adults, caffeine consumption has been reported 
for multiple types of neurological disorders such as 
Alzheimer’s disease, Parkinson’s disease, and sleep 
deprivation, since it improves the cognitive dys-
function caused by these disorders6. However, pre-
natal caffeine exposure alters cardiac morphology. 
These changes are induced by altered expression 
of the MYH7 gene, whose expression is increased 
during heart failure or stress66. Increased MYH7 
expression causes cardiomyopathy by modulation 
of the adenosine receptor A1 by caffeine, and thus 
results in heart failure67. Therefore, one of the po-
tential mechanisms by which caffeine impairs cog-
nitive function is through its effect on heart devel-
opment and function.

Conclusions

Both clinical and experimental studies have 
shown that prenatal caffeine exposure alters 
some aspects of learning and memory perfor-
mance3,62. Caffeine can cross the placental and 
blood-brain barriers, which allows it to reach the 
fetal brain and act through adenosine receptors. 
Therefore, caffeine causes changes in brain de-
velopment by altering the expression of proteins 
such as BDNF and CREB in the hippocampus 
and cortex; this leads to alteration of learning 
and memory functions. 
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