
11192

Abstract. – OBJECTIVE: The aim of this 
study was to explore the effect of micro ribonu-
cleic acid (miR)-133b on 1-methyl-4-phenylpyri-
dinium ion (MPP+)-induced apoptosis in the Par-
kinson’s disease (PD) model. 

MATERIALS AND METHODS: PC12 cells 
were induced by different concentrations of 
MPP+ to establish the PD cell model. Subse-
quently, the survival rate of PC12 cells was de-
tected using Cell Counting Kit-8 (CCK-8) assay. 
Quantitative Reverse Transcription-Polymerase 
Chain Reaction (qRT-PCR) was used to detect 
the expression of miR-133b in the PD model 
induced by different concentrations of MPP+. 
Next, PC12 cells were transfected with miR-133b 
mimic and miR-negative control (NC), and divid-
ed into MPP+ group, MPP+ + miR-NC group and 
MPP+ + miR-133b mimic group. Transfection effi-
ciency was verified using qRT-PCR. The apopto-
sis of cells was detected using terminal deoxy-
nucleotidyl transferase-mediated dUTP nick end 
labeling (TUNEL) assay. Moreover, the expres-
sions of extracellular signal-regulated kinase 
1/2 (ERK1/2) and phosphorylated (p)-ERK1/2 
were determined using Western blotting.

RESULTS: After MPP+ treatment, the sur-
vival rate of PC12 cells significantly declined 
(p<0.05). MPP+ exhibited toxicity against PC12 
cells in a concentration-dependent manner. 
Meanwhile, cell survival rate decreased remark-
ably with the increase of MPP+ concentration 
(p<0.05). With increased concentration of MPP+, 
the expression of miR-133b in the PD cell mod-
el declined significantly (p<0.05). The apopto-
sis of PC12 cells was remarkably inhibited by 
overexpression of miR-133b in the PD cell mod-
el (p<0.05). In addition, the protein expression 
of p-ERK1/2 in PC12 cells was notably reduced 
after overexpression of miR-133b in the PD cell 
model (p<0.05).

CONCLUSIONS: MiR-133b is lowly expressed 
in the PD cell model. Furthermore, overexpres-

sion of miR-133b inhibits cell apoptosis in the 
PD cell model by regulating the ERK1/2 signal-
ing pathway.
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Introduction

Parkinson’s disease (PD), the most common 
neurodegenerative dyskinesia, is characterized 
by motor symptoms (such as resting tremor, 
stiffness, and postural instability), and non-motor 
symptoms (such as autonomic, mental and sen-
sory cognitive disorders, and dementia)1. PD is 
the second major neurodegenerative disease after 
Alzheimer’s disease and affects about 1% of the 
population aged above 60 years old2, with more 
than 100,000 deaths every year worldwide3. In 
addition to lowering the life quality of patients, 
PD brings heavy economic burden on the society. 
It is estimated that the economic burden of PD 
may be up to 23 billion dollars annually in the 
USA4. The non-motor symptoms of PD, a chron-
ic and progressive disease, usually occur many 
years before dyskinesia. The pathology of PD is 
the degeneration of nigrostriatal dopaminergic 
neurons and the accumulation of α-synuclein 
and other proteins. This may eventually lead to 
insufficient dopamine activity5,6. PD is the result 
of complex interaction among genetic and envi-
ronmental factors7. In recent years, great progress 
has been made in the pathogenesis and molecular 
mechanism of PD. However, there are still no ef-
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fective molecular markers for early intervention 
of Parkinson’s disease. 

Micro ribonucleic acids (miRNAs) are a class 
of non-coding RNAs with about 22 bases in 
length. They can bind to the 3’UTR of messenger 
RNAs (mRNAs), ultimately participating in mR-
NA degradation or deadenylation and translation 
inhibition. MiRNAs have been observed involved 
in various physiological and pathological pro-
cesses8,9. They can regulate protein expression 
involved in a variety of biological processes, such 
as cell proliferation, differentiation, cycle, stem-
ness maintenance, and apoptosis10. Considering 
that one miRNA can control the expression of 
hundreds of transcripts, miRNAs possess huge 
regulatory potential. This is the reason why the 
entire phenotype of diseases can be actually af-
fected by regulating a single miRNA. Therefore, 
there is a correlation between the miRNA net-
work and the pathogenesis of neurodegenerative 
diseases, including PD11. In addition, there are 
also changes in the expression levels of several 
miRNAs in different PD models and the brain 
of PD patients12,13. MiR-133b is highly expressed 
in midbrain dopaminergic neurons, whereas is 
lowly expressed in the midbrain of PD patients14. 
In mouse embryonic stem (ES) cells, miR-133b 
negatively regulates the differentiation of ES cells 
into dopaminergic neurons. This indicates that 
miR-133b may play an important role in the 
pathogenesis of PD. Besides, miR-133b is a pro-
moter of cervical carcinoma development through 
the activation of extracellular signal-regulated 
kinase (ERK) and AKT1 pathways15. Hence, it is 
speculated that miR-133b may exert a protective 
effect in the PD model via regulating the ERK1/2 
signaling pathway.

1-methyl-4-phenylpyridinium ion (MPP+) is 
the most relevant and commonly-used toxin 
for the establishment of PD model in vitro. 
Its resulting clinical, biochemical and neuro-
pathological changes are similar to those of 
idiopathic PD. In the current study, the survival 
rate of primary PC12 cells treated with MPP+ 

remarkably declined, which was accompanied 
by a significant decrease in the expression 
of miR-133b. The overexpression of miR-133b 
inhibited cell apoptosis in the PD cell model, 
accompanied by changes in the ERK1/2 sig-
naling pathway. All these findings suggest that 
one of the potential mechanisms of reversion 
of MPP+-induced axonal degeneration may be 
that miR-133b overexpression inhibits the acti-
vation of the ERK1/2 signaling pathway.

Materials and Methods

Cell Culture
PC12 cells were purchased from Shanghai 

Institute of Biochemistry and Cell Biology, Chi-
nese Academy of Sciences (Shanghai, China). 
All cells were cultured in Dulbecco’s Modified 
Eagle’s Medium (DMEM; Gibco, Rockville, 
MD, USA) containing 100 U/mL penicillin, 
100 μg/mL streptomycin, and 10% fetal bovine 
serum (FBS; Gibco, Rockville, MD, USA) un-
der 5% CO2 at 37°C. The culture medium was 
replaced every other day. Upon reaching 80% of 
confluence, the cells were digested with 0.25% 
trypsin (Thermo Fisher Scientific, Waltham, 
MA, USA) and passaged until the logarithmic 
growth phase.

Establishment of PD Cell Model 
MPP+ (Sigma-Aldrich, St. Louis, MO, USA) 

was dissolved in deionized water and prepared 
into the stock solution (10 mmol/L). PC12 cells 
were seeded in a culture dish and treated with 
different concentrations of MPP+ (0.5, 1 and 2 
mmol/L) for 24 h upon reaching 80-90% conflu-
ence. Finally, the PD cell model was successfully 
established in vitro.

Cell Proliferation Assay 
PC12 cells were first inoculated into 96-well 

plates, and the medium was discarded after 
adherence. Then, the cells were incubated with 
different concentrations of MPP+ (0.5, 1 and 2 
mmol/L) for 24 h, with 5 replicates at each con-
centration. According to the instructions of Cell 
Counting Kit-8 (CCK-8) assay, 10 μL of CCK-
8 solution (Dojindo Molecular Technologies, 
Kumamoto, Japan) was added into each well, 
followed by incubation for 2 h in dark. Absor-
bance at 450 nm was finally measured using a 
micro-plate reader, based on which cell survival 
rate was calculated.

Cell Transfection 
After treatment with 1 mmol/L MPP+, PC12 

cells were seeded into a 24-well plate. The cells 
were  divided into four groups, including: blank 
control group (Control group, no treatment), 
MPP+ group (treated with 1 mmol/L MPP+ on-
ly), MPP+ + miR-133b mimic group (transfected 
with 100 nM miR-133b mimic according to the 
instructions of the miRNA transfection reagent), 
and MPP+ + miR-negative control (NC) group 
(transfected with 100 nM miR-NC). At 24 h 
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after transfection, the cells were collected, and 
total RNA was extracted. After 48 h, the protein 
was extracted from cells for Western Blotting 
analysis. 

Quantitative Reverse 
Transcription-Polymerase 
Chain Reaction (qRT-PCR)

Total RNA was extracted from tissue sam-
ples using TRIzol reagent (Invitrogen, Carlsbad, 
CA, USA). Subsequently, extracted RNA was 
reversely transcribed into cDNA using Prime-
Script™ RT-PCR kit (TaKaRa, Dalian, China), 
followed by qRT-PCR using LightCycler 480 II 
system (Roche, Basel, Switzerland). Glyceralde-
hyde 3-phosphate dehydrogenase (GAPDH) and 
U6 were used as internal references for gene 
and miR-133b, respectively. Relative expression 
levels of genes were measured using the 2-ΔΔCT 

method. Primers used in this study were shown 
in Table I.

Terminal Deoxynucleotidyl 
Transferase-Mediated dUTP Nick
End Labeling (TUNEL) Assay

PC12 cells were fixed with formaldehyde, 
washed with phosphate-buffered saline (PBS) 
for 3 times, and permeabilized with 1% Triton 
X-100. After reaction with TdT solution at room 
temperature, color development was performed. 
Finally, the cells were observed under a micro-
scope, and TUNEL+ cells were counted.

Western Blotting 
Tissues were first lysed on ice using radio-

immunoprecipitation assay (RIPA) lysis buffer 
(Roche, Basel, Switzerland) supplemented with 
protease inhibitor (PMSF). After centrifugation 
at 14,000 rpm for 20 min, the supernatant was 
collected. Protein concentration was quantified 
using the bicinchoninic acid (BCA) kit (Pierce, 
Rockford, IL, USA). After separation via 10% 
sodium dodecyl sulphate-polyacrylamide gel 
electrophoresis (SDS-PAGE), protein samples 
were transferred onto polyvinylidene difluoride 

(PVDF) membranes (Millipore, Billerica, MA, 
USA). Next, the membranes were sealed with 5% 
skimmed milk powder for 1 h and incubated with 
specific primary antibodies of β-actin (1:2000, 
Abcam, Cambridge, MA, USA), ERK1/2 (1:1000, 
Abcam, Cambridge, MA, USA) and phosphor-
ylated (p)-ERK1/2 (1:1000, Abcam, Cambridge, 
MA, USA) at 4°C overnight. On the next day, the 
membranes were incubated with corresponding 
secondary antibodies for 2 h at room temperature. 
Immuno-reactive bands were finally detected us-
ing the SuperSignal West Pico chemiluminescent 
substrate (Thermo Fisher Scientific, Waltham, 
MA, USA).

Statistical Analysis 
Statistical Product and Service Solutions 

(SPSS) 22.0 software (IBM Corp., Armonk, NY, 
USA) was used for all statistical analysis. Numer-
ical variables were expressed as mean ± standard 
deviation (SD). Independent-samples t-test was 
adopted for the comparison between two groups. 
p<0.05 was considered statistically significant.

Results

Effect of MPP+ Treatment on 
PC12 Cell Viability 

CCK-8 assay showed that the survival rate 
of PC12 cells declined significantly after MPP+ 
treatment (p<0.05). MPP+ exhibited toxicity 
against PC12 cells in a concentration-dependent 
manner, and cell survival rate decreased mark-
edly with the increase of MPP+ concentration 
(p<0.05) (Figure 1).

Effect of MPP+ Treatment on Expression 
of MiR-133b in PC12 Cells 

After MPP+ treatment, the expression level of 
miR-133b in PC12 cells was significantly lower 
than that in the Control group (p<0.05). With the 
increase of MPP+ concentration, the expression 
of miR-133b in PC12 cells declined remarkably 
(p<0.05) (Figure 2).

Table I. Primer sequences.

	 Index 	 F (5’-3’)	 R (5’-3’)

GAPDH	 GGAGCGAGATCCCTCCAAAAT	 GGCTGTTGTCATACTTCTCATGG
miR-133b	 GGGTTTGGTCCCCTTCA	 TGGTGTCGTGGAGTCG
U6	 GCTTCGGCACATATACTAAAAT	 AACGCTTCACGAATTTGCGT
ERK1/2	 ATATCCTTGGCTACTAAC	 TATGGCTACAATGATTCTA
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Effect of MiR-133b Transfection on 
Expression of MiR-133b 

QRT-PCR results showed that the expression 
of miR-133b was evidently higher in MPP+ + miR-
133b mimic group than MPP+ + miR-NC group, 
and the difference was statistically significant 
(p<0.05). These findings indicated that the trans-
fection efficiency of miR-133b in PC12 cells was 
higher after MPP+ treatment (Figure 3).

Overexpression of MiR-133b Inhibited 
PC12 Cell Apoptosis in PD Model 

No statistically significant difference was ob-
served in the apoptosis rate between MPP+ group 

and MPP+ + miR-NC group (p>0.05). However, 
cell apoptosis in the two groups was markedly 
higher than the Control group (p<0.05). Mean-
while, cell apoptosis rate was notably lowered in 
MPP+ + miR-133b mimic group compared with 
MPP+ + miR-NC group (p<0.05) (Figure 4).

Effect of MiR-133b Overexpression on 
ERK1/2 Signaling Pathway Protein Levels

QRT-PCR results showed that the mRNA ex-
pression of ERK1/2 displayed no significant dif-
ference between MPP+ group and MPP+ + miR-
NC group (p>0.05). However, it was significantly 
upregulated in the two groups in comparison with 
Control group (p<0.05). Meanwhile, the mRNA 
expression of ERK1/2 remarkably declined in 
MPP+ + miR-133b mimic group compared with 
MPP+ + miR-NC group (p<0.05) (Figure 5). As 
shown in Figure 6, the results of Western blotting 
manifested that there was no apparent difference 
in the protein expression of p-ERK1/2 between 
MPP+ group and MPP+ + miR-NC group (p>0.05). 
However, the protein expression of p-ERK1/2 in 
the two groups was distinctly higher than that in 
Control group (p<0.05). In addition, the protein 
expression of p-ERK1/2 prominently declined in 
MPP+ + miR-133b mimic group compared with 
MPP+ + miR-NC group (p<0.05)

Discussion

Despite many studies on the pathogenesis of 
PD in recent years, PD remains a major challenge 
in the field of neurobiology due to no definite 

Figure 2. Effects of MPP+ at different concentrations on 
expression of miR-133b in PC12 cells. Note: *p<0.05 vs. 
Control group (0.0), #p<0.05 vs. 0.5 mmol/L MPP+, &p<0.05 
vs. 1 mmol/L MPP+.

Figure 1. Effects of MPP+ at different concentrations on 
survival rate of PC12 cells. Note: *p<0.05 vs. Control group 
(0.0), #p<0.05 vs. 0.5 mmol/L MPP+, &p<0.05 vs. 1 mmol/L 
MPP+.

Figure 3. Expression of miR-133b in cells after transfection 
detected via qRT-PCR. Note: *p<0.05 vs. MPP+ + miR-NC 
group.
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treatment methods8,16. The progress of researches 
on PD is limited by the low utilization of brain 
tissues and the dependence on cadaver samples. 
Therefore, several kinds of PD cell and animal 
models have been developed and widely used as 
alternatives for these clinical tissues that are hard 

to be obtained. In this investigation, the common-
ly-used toxic agent MPP+ was used to induce the 
PD model in PC12 cells.

MiRNAs, a class of non-coding single-stranded 
RNA molecules, play key regulatory roles during 
biological development and mainly regulate the 
expression of target genes at the post-transcrip-
tional level. Therefore, miRNAs exert important 
effects on tumorigenesis, biological development, 
organ regulation and metabolism17,18. It has been 
proved in vitro and in vivo that many miRNAs 
participate in the apoptosis, autophagy, inflam-
mation, mitochondrial dysfunction and oxidative 
stress in PD. Consistently, miR-7, miR-153 and 
miR-221 exert regulatory roles in the PD cell 
model19,20. The expression of miR-133b is specif-
ically lacked in brain tissues of PD patients and 
animal models14. Meanwhile, the expression of 
serum miR-133b also declines significantly in 
PD patients21. MiR-133b has multiple biological 
activities. In the present study, we manifested 
that the overexpression of miR-133b could pre-
vent MPP+-induced neuronal apoptosis. Besides, 
the balance between apoptosis and proliferation 
is critical to keeping normal cell activity. The 
disruption of such balance often results in dis-
ease development and progression. In mamma-
lian cells, 5 mitogen-activated protein kinase 

Figure 4. Comparison of apoptosis rate among groups after transfection (magnification: 400×) Note: *p<0.05 vs. Control 
group, #p<0.05 vs. MPP+ + miR-NC group.

Figure 5. Effect of miR-133b overexpression on ERK1/2 
mRNA expression determined via qRT-PCR. Note: *p<0.05 
vs. Control group, #p<0.05 vs. MPP+ + miR-NC group.
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(MAPK) families have been determined, includ-
ing ERK1 and ERK2, c-Jun N-terminal kinases 
(JNKs) (JNK1, JNK2 and JNK3); p38 kinase 
isozymes (p38α, p38β, p38γ and p38δ), ERK3/
ERK4, and ERK522-24. The MAPK pathway is 
an important regulator of cell proliferation and 
survival25. As key members of the MAPK family, 
ERK1 and ERK2 integrate extracellular signals 
to promote the proliferation and growth of most 
cells, as well as the learning and memory ability 
of nerve cells26. Phosphorylation of ERK1/2 in 
brain tissues is weakened with age. However, 
the exact role of ERK1/2 in brain aging remains 
unknown27,28. In this study, it was found that 
overexpression of miR-133b could suppress the 
activation of ERK1/2. Considering that the pro-
teins or RNAs interacting with miR-133b in nerve 
cells may exert multiple functions, and that the 
ERK1/2 signaling pathway is complex, it is worth 
further study.

The differential expression of miR-133b in 
tissues and serum of PD patients has been re-
ported previously. However, there is still no re-
search indicating that miR-133b regulates the 
growth and apoptosis of nerve cells through the 
ERK1/2 signaling pathway. In this study, the 
results manifested that in the MPP+-induced PD 
cell model, miR-133b expression was reduced 
remarkably, accompanied by increased protein 
expression level of p-ERK1/2. The above findings 
demonstrate for the first time that miR-133b can 
inhibit the activation of ERK1/2 and improve 
MPP+-induced apoptosis in the PD cell model. 
Although the mechanism of action of the ERK1/2 

signaling pathway remained to be deeply ex-
plored, our findings provided new ideas for such 
a mechanism in PD, which might have important 
significance for studying the role of miR-133b in 
PD pathogenesis.

Conclusions

To sum up, restoring the expression of miR-
133b may be a new and attractive treatment meth-
od for Parkinson’s disease.
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