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Abbreviations
N6-methyladenosine: m6A; methyltransferase-like 3: 
METTL3; methyltransferase-like 14:	 METTL14; methyl-
transferase-like 16: METTL16; Wilms tumor 1-associating 
protein: WTAP; RNA-binding motif protein 15: RBM15; 
methyltransferase complex: MTC: myeloid ecotropic viral 
integration site 1; MEIS1: human artery smooth muscle 
cells: HASMCs; abdominal aortic aneurysm: AAA: fat 
mass and obesity-associated protein: FTO; bone marrow 
differentiation factor 88: My88; signal transducer and 
activator of transcription 1: STAT1; lipopolysaccharide: 
LPS; vascular smooth muscle cells: VSMCs; insulin-like 
growth factor 2: IGF2; Interferon regulatory factor-1: IRF-
1; Macrophage scavenger receptor 1: MSR1; dead box 
protein 5: DDX5; mono-(2-ethylhexyl) phthalate: MEHP; 
scavenger receptor B type 1: SR-B1; nonalcoholic fatty 
liver disease: NAFLD; peroxisome proliferator-activated 
receptor γ: PPARγ; fatty acid synthase: FAS; stearoyl-CoA 
desaturase 1; SCD1: single nucleotide polymorphism: 
SNP; total panax notoginseng saponins: TPNS.

Introduction

Atherosclerosis is a chronic inflammatory and 
lipid metabolic disorder disease which is a pri-
mary cause of vascular death worldwide1. Un-
derstanding the potential mechanisms that drive 
the pathological development of atherosclerosis 
are indispensable for solving clinical problems 
and developing new therapeutic strategies. Ath-
erosclerosis is considered to occur in large and 
medium arteries triggered by risk factors which 
lead to endothelial dysfunction and atheroscle-
rotic plaques1. N6-methyladenosine (m6A) is the 
most prevalent and abundant post-transcriptional 

Abstract. – OBJECTIVE: Atherosclerosis, 
characterized by endothelial injury, multicellu-
lar involvement, chronic inflammation, and lip-
id deposition, can lead to acute cardiovascular 
events. N6-methyladenosine (m6A) is the most 
abundant, prevalent RNA modification in mam-
malian cells. m6A, a reversible modification, 
can be catalyzed by m6A methyltransferase 
complexes (writers), reverted by demethylases 
(erasers), and recognized by m6A-binding pro-
teins (readers). Emerging evidence suggests 
that m6A modification plays a significant role 
in regulating many biological and cellular pro-
cesses in atherosclerosis. In this review, we 
highlight the biological function of m6A mod-
ification and give a brief perspective on its fu-
ture applications in atherosclerosis.

MATERIALS AND METHODS: This is a nar-
rative review. The literature search strategy for 
indexed Scopus articles was performed ran-
domly using PubMed and MEDLINE as the pri-
mary sources. No specific term was used.

RESULTS: As the mechanism of the relation-
ship between inflammatory response and ath-
erosclerosis, m6A has become a new focus 
in the study of clinical treatment strategies 
for atherosclerosis. METTL14-dependent m6A 
modification may be a target for atherosclero-
sis therapy. A variety of m6A regulatory factors 
promote the progression of atherosclerosis 
by regulating polarization and inflammation of 
macrophages. WTAP and METTL14 can affect 
the phenotypic modulation of VSMCs through 
m6A modification.

CONCLUSIONS: The existence of m6A in car-
diovascular transcripts is necessary to main-
tain cardiac function, and the level of m6A 
modification is increased in a variety of ath-
erosclerotic vascular cells, indicating that m6A 
modification is involved in the pathophysio-
logical process of atherosclerosis. m6A mod-
ification plays an important character in ath-
erosclerosis.
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modifications in eukaryotic mRNA2. It was firstly 
reported in the 1970s3, the function of m6A stayed 
unclear until recent years. Subsequent studies4-6 
showed that m6A peak sites mainly existed in the 
RRACH consensus sequence (R = A, G; H = A, 
C, U), which is located around stop codons and 
in 3’ UTR (untranslated region) and within long 
internal exons. The m6A levels of modification in 
mRNA were found to be dynamic and reversible, 
by varying in development of cellular process and 
in regulation of gene expression7. 

Recently, the role of m6A modification in ath-
erosclerosis has been increasingly recognized8. 
More importantly, epigenetic processes, m6A 
modification in particular, have specific “writers” 
(methyltransferases), “erasers” (demethylases) 
and “readers” (m6A binding proteins)9. Increas-
ingly epigenetic evidence8,9 support that RNA 
methylation plays a critical role in atherosclerosis, 
giving a new perspective to treat atherosclerosis 
by intervening these epigenetic processes.

In this review, we highlight the biological func-
tion of m6A modification as well as the relation-
ships between the m6A modification and patho-
logical process of atherosclerosis, to provide new 
points for the study of molecules targeting athero-
sclerosis and its future applications.

m6A “Writers”, “Erasers” and “Readers”
Similar to dynamic modifications of histone 

protein and DNA methylation, m6A modification 

is mediated by three types of regulators: “writers” 
(methyltransferases), “erasers” (demethylases) 
and “readers” (m6A binding proteins), respective-
ly (Figure 1). 

Cross-talk among writers, readers and erasers 
of m6A modification is involved in the regulation 
of RNA life cycle including pre-mRNA splicing, 
pri-miRNA processing, RNA translation and 
RNA degradation.

Writers
N6-methyladenosine modification usually refers 

to the methylation of the sixth nitrogen of adenos-
ine in mRNA. The m6A methyltransferases consist 
of methyltransferase-like 3 (METTL3)10, methyl-
transferase-like 14 (METTL14)11, methyltransfer-
ase-like 16 (METTL16)12, Wilms tumor 1-associat-
ing protein (WTAP)13, KIAA142914, RNA-binding 
motif protein 15 (RBM15), and its paralogue 
RBM15B15. m6A modification is catalyzed by a 
methyltransferase complex (MTC) which is main-
ly composed of METTL3, METTL14 and WTAP. 
METTL3 is the core catalytic component in the 
complex, whereas METTL14 plays an active role 
that forms a stable structure with METTL3 and 
contributes to substrate recognition16. WTAP, 
which is known to interact with METTL3 and 
METTL14, co-localizes with METTL3-METTL14 
into nuclear speckles and functions as an adaptor 
to recruit MTC to mRNA targets17. Besides, MET-
TL16, KIAA1429, RBM15 and RBM15B are the 

Figure 1. m6A modification by m6A “writers”, “erasers” and “readers”. m6A modification mediated by regulators: “writers” 
(METTL3, METTL14, WTAP, RBM15), “erasers” (FTO, ALKBH5) and “readers” (YTHDC1, YTHDF1, YTHDF2, YT-
HDF3, IGF2BPs).
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newly found methyltransferases of the m6A com-
plex, but their functions are not clear.

METTL3
METTL3 has been identified to be involved in 

various biological processes associated with the de-
velopment and progression of diseases. METTL3 
can promote the proliferation and transition of cardi-
ac fibroblasts and collagen accumulation, providing 
a molecular target for the regulation of fibrosis and 
the related cardiac diseases18. Hypoxic stress upreg-
ulating the level of METTL3-mediated m6A modifi-
cation adjust the proliferation, migration, viability of 
endothelial cells and tube formation in vitro19. MET-
TL3 can enhance the M1 macrophage polarization 
and potentially playing as an anti-inflammatory role 
via targeting the coding sequence and 3’-untranslat-
ed regions of STAT1, a transcription factor promot-
ing M1 macrophage polarization, to install the m6A 
modification20. METTL3 methylating TFEB, a tran-
scription factor controlling lysosomal biogenesis and 
autophagy genes, in the 3’-UTR inhibits autophagic 
flux and enhances apoptosis in H/R-treated cardio-
myocytes21. METTL3-mediated m6A methylation 
promotes the result of compensated cardiac hyper-
trophy and weakened m6A leads to cardiomyocyte 
remodeling and dysfunction22. 

METTL14
Studies23 have demonstrated that METTL14 

was also related with the development of cardio-
vascular diseases. METTL14 promotes athero-
sclerotic vascular endothelial cell proliferation 
and invasion through regulating N6-methylade-
nosine modified primary miR-19a. In pulmonary 
hypertension, myeloid ecotropic viral integration 
site 1 (MEIS1) mediates hypoxia-induced the 
proliferation and migration of pulmonary artery 
smooth muscle cells through METTL14/MEIS1/
p21 signaling pathway24. Mechanistical study 
demonstrated that downregulated METTL14 in 
calcified arteries substantially abolishes the in-
crease of indoxyl sulfate-induced m6A modifica-
tions and the decrease of human artery smooth 
muscle cells (HASMCs) calcification25. In addi-
tion, comparing to healthy aortic tissues, m6A 
modification significantly increased in abdomi-
nal aortic aneurysm (AAA). METTL14 has been 
proved to relate to inflammatory infiltrates and 
neovascularization in AAA26.

Erasers
m6A methylation is a dynamic and reversible 

RNA modification as discovered of two demeth-

ylases, fat mass and obesity-associated protein 
(FTO) and ALKBH527,28. The two identified de-
methylases of FTO and ALKBH5 both belong to 
the alpha-ketoglutarate-dependent dioxygenase 
family. FTO was the first m6A-associated de-
methylase to be discovered, and has an efficient 
oxidative demethylation activity27. FTO-depen-
dent m6A modification can contribute to human 
obesity and regulating energy homeostasis, its 
biological function as a demethylation in cardio-
vascular system is essential30,31. The second iden-
tified m6A demethylase is ALKBH5, which has 
been shown to regulate mRNA export, RNA me-
tabolism and the assembly of mRNA in nuclear 
speckles28. Moreover, demethylase ALKBH5 also 
plays the key roles in biological processes, such 
as cell cycle, stress response, apoptosis, and RNA 
metabolism32.

Readers
The reader of m6A methylation can recognize 

and bind with the m6A-modified mRNA to reg-
ulate gene expression via modulating various 
processes, such as mRNA transcription, stability, 
splicing, nuclear export, and stability33. Different 
readers have different biological functions, mem-
bers, including YTHDC1, YTHDF1, YTHDF2, 
YTHDF3, HNRNPA2B1, EIF3 and HNRNPC34. 

m6A and Atherosclerosis (Figure 2)

m6A and Inflammation
Various chronic inflammatory diseases can 

stimulate the occurrence and development of car-
diovascular diseases. These abnormal biochemi-
cal characteristics are caused by the interaction of 
oxidative stress pathway, cytokines and renin-an-
giotensin system35. Inflammatory response is one 
of the main and basic risk factors in all stages of 
atherosclerosis36. As the specific mechanism of 
the relationship between inflammatory response 
and atherosclerosis has not been fully clarified, 
m6A has become a new focus in the study of clini-
cal treatment strategies for atherosclerosis. 

Dysfunction of vascular endothelial cells is a 
key factor in the pathogenesis of atherosclerosis37. 
The TNF-α-induced high expression of METTL14 
in endothelial cells promoted the translation of 
FOXO1 mRNA through YTHDF1 recognition, 
thus increasing the expression of adhesion mole-
cules and mediating endothelial-monocyte adhe-
sion. METTL14 gene knockout significantly in-
hibits the development of atherosclerosis, which 
proves the potential of METTL14 in the treatment 
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of atherosclerosis38. It has been shown23 that MET-
TL14 increases the m6A modification of pri-miR-
19a and promotes the processing of mature miR-
19a, thus promoting the proliferation and invasion 
of atherosclerotic vascular endothelial cells. This 
means that METTL14-dependent m6A modifica-
tion may be a target for atherosclerosis therapy.

Scholars39 have shown that METTL3 knock-
out can inhibit the production of inflammatory 
cytokines and the expression of various genes 
related to inflammatory response, mainly by 
changing the phosphorylation level of related sig-
naling pathways, such as the splicing variant of 
bone marrow differentiation factor 88 (My88) in 
lipopolysaccharide-induced human pulpitis. It is 
suggested that m6A may be involved in the patho-
physiological process of atherosclerotic inflam-
mation. METTL3 has been postulated to play a 
pro-inflammatory role by driving macrophages 
polarization toward pro-inflammatory M1 phe-
notype. METTL3 upregulates the expression of 
key transcription factor, such as STAT1, initiating 
pro-inflammatory macrophages polarization. In 
view of the key role of M1 macrophages in the 
pathogenesis of various inflammatory diseases, 
METTL3-STAT1-mediated macrophage polar-
ization may lead to the occurrence and develop-
ment of atherosclerosis20.

Transforming macrophages into an inflam-
matory phenotype are closely related to the pro-
gression of atherosclerosis. METTL3 directly 

methylates the signal transducer and activator of 
transcription 1 (STAT1) mRNA in the CDS and 
3’UTR regions leading to the increases of STAT1 
mRNA stability and the promotion of the polar-
ization of pro-inflammatory M1 macrophages20. 
It was demonstrated that RNA binding motif 
protein 4 (RBM4) interacted with reader YT-
HDF2 to reduce the level of m6A modified STAT1 
mRNA and inhibit the polarization of M1 mac-
rophages induced by interferon-γ40. In addition, 
FTO gene knockout of m6A demethylase inhib-
its the phosphorylation of key proteins in NF-κB 
signal pathway, such as IKK α/β, IκBα and p6, 
and reduces the mRNA stability of STAT1 and 
PPAR-γ through YTHDF2 involvement, thus hin-
dering the polarization of macrophages41. Mac-
rophage-mediated inflammation is an important 
mechanism in the development of atheroscle-
rosis. Downregulation of YTHDF2 significant-
ly increased the LPS-induced the expression of 
proinflammatory cytokines, such as IL-6, TNF-α, 
IL-1β, and IL-12 and activated MAPK and NF-
κB signaling pathways in RAW 264.7 cells42,43. 
However, upregulation of METTL3 significant-
ly attenuated the inflammatory response depen-
dence on NF-κB signaling pathway in lipopoly-
saccharide (LPS)-induced macrophages42,43. All 
the above studies suggested that METTL3 and 
YTHDF2 may be the target of anti-inflammatory 
therapy. Circular RNAs (circRNAs) have been re-
garded as critical regulators in the progression of 

Figure 2. Biological process of m6A modification in different cells. 
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atherosclerosis. Circ_0029589 silence inhibits the 
proliferation, migration and invasion of vascular 
smooth muscle cells (VSMCs) meanwhile induces 
the apoptosis of VSMCs by regulating miR-424-
5p/ insulin-like growth factor 2 (IGF2) axis44. The 
levels of m6A and METTL3 of has_circ_0029589 
in macrophages of patients with acute coronary 
syndrome are increased. Interferon regulatory 
factor-1 (IRF-1) inhibits circ_0029589, by pro-
moting the m6A modification of circ_0029589, 
thus promoting macrophage pyrogenesis and 
inflammation of atherosclerosis45. Based on the 
above results, a variety of m6A regulatory factors 
promote the progression of atherosclerosis by reg-
ulating polarization and inflammation of macro-
phages.

m6A and Lipid Metabolism
Atherosclerosis is a chronic pathological pro-

cess characterized by the gradual accumulation 
of lipids, cells and fibers on the arterial wall46. 
Macrophages play a key role in all stages of ath-
erosclerosis. When arterial walls are damaged, the 
monocytes differentiate into macrophages in the 
intima. Macrophages absorb and metabolize exces-
sive ox-LDL, resulting in the deposition of esteri-
fied cholesterol in the cytoplasm and the genera-
tion of foam cells. Macrophage scavenger receptor 
1 (MSR1) and CD36 are highly expressed on the 
surface of macrophages and the main receptors for 
binding, uptake and clearance of ox-LDL47. Studies 
have shown that ox-LDL can induce the expression 
of dead box protein 5 (DDX5), and then, promote 
the expression of MSR1 in macrophages. DDX5 is 
upregulated in macrophage treated with ox-LDL, 
thereby inhibiting the methyltransferase activity of 
METTL3 on MSR1 mRNA, maintaining the sta-
bility of MSR1 mRNA and promoting lipid uptake. 
This study48 suggests that DDX5 inhibits the ac-
tivity of METTL3 and the binding of METTL3 to 
MSR1 mRNA. However, the specific mechanism 
of DDX5 inhibiting the activity of METTL3 is un-
clear, and how DDX5 affects secretion of pro-in-
flammatory factors from macrophages remains to 
be further studied.

Macrophages are important immune cells in the 
necrotic core area of atherosclerotic plaque, coordi-
nating a series of inflammatory processes. Choles-
terol efflux from macrophages plays an important 
role in reversing the transport of cholesterol in the 
arterial wall. Study49 have shown that a major bio-
active metabolite, mono-(2-ethylhexyl) phthalate 
(MEHP), increased the m6A modification of scav-
enger receptor B type 1 (SR-B1) through reducing 

the METTL14 expression in macrophage Raw 
264.7 cells, thus suppressing SR-B1 expression and 
leading to the formation of foam cells.

The liver is the main site of endogenous lipid 
production and plays an important role in lipid 
metabolism. Curcumin can improve the LPS-in-
duced liver lipid metabolism disorder by increas-
ing the mRNA expression of METTL3 and MET-
TL1450. Animal experiments found that FTO is 
increased in the liver, while nonalcoholic fatty 
liver disease (NAFLD) and the overexpression 
of FTO could promote inflammation and lead 
to excessive accumulation of lipids in hepato-
cytes51. LPS can increase the expression of fatty 
acid synthase (FAS), stearoyl-CoA desaturase 1 
(SCD1) and other lipid metabolism-related en-
zymes through FTO-mediated m6A hypomethyl-
ation52. In addition, overexpression of METTL3 
can inhibit the expression of peroxisome prolif-
erator-activated receptor γ (PPARγ), reducing 
lipid deposition and TG content in adipocytes53. 
m6A methylation can also regulate the stability 
and half-life of peroxisome proliferator-activated 
receptor α (PPARα) mRNA, an important gene of 
liver lipid metabolism, thus regulating the tran-
scription and translation of PPARα gene through 
YTHDF2 binding to PPAR-α and affecting the 
circadian rhythm of lipid metabolism54. It has 
been found that many m6A- single nucleotide 
polymorphism (SNP) are associated with TG, 
total cholesterol (TC), high density lipoprotein 
cholesterol (HDL-C) and low density lipopro-
tein cholesterol (LDL-C) levels, some of which 
are significantly associated with HDL-C and TG, 
suggesting that, in addition to liver lipid metab-
olism disorders, m6A methylation may also be 
involved in lipid metabolism in other tissues and 
organs, such as hyperlipidemia and atheroscle-
rotic diseases55. The precise mechanism of how 
m6A methylation influences the development of 
lipid disorders need to be further clarified. 

m6A and Vascular Calcification
Vascular calcification, particularly coronary 

artery calcification, is a major independent risk 
factor associated with cardiovascular events and 
death. Phenotypic changes of vascular smooth 
muscle cells (VSMCs) also promote the progres-
sion of cardiovascular disease. The total panax 
notoginseng saponins (TPNS) can regulate the 
WTAP/p16 signal axis through m6A modification, 
thus inhibiting the balloon catheter injury-in-
duced proliferation, migration and intimal hyper-
plasia of VSMCs in rat carotid arteries, suggest-
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ing that m6A modification-mediated regulation 
of gene expression may be a potential target for 
arterial restenosis56. Moreover, vascular calcifica-
tion in VSMCs increases the risk of atherosclerot-
ic plaque rupture57. METTL14-catalyzed klotho 
degradation induced by indole sulfate, while the 
downregulation of the expression of METTL14 
can reduce calcification and enhance vascular 
repair function25. The above studies suggest that 
WTAP and METTL14 can affect the phenotypic 
modulation of VSMCs through m6A modification 
and can be used as potential targets for the treat-
ment of atherosclerosis.

Conclusions 

The existence of m6A in cardiovascular tran-
scripts is necessary to maintain cardiac function, 

and the level of m6A modification is increased 
in a variety of atherosclerotic vascular cells, in-
dicating that m6A modification is involved in the 
pathophysiological process of atherosclerosis. At 
present, m6A modification in cardiovascular dis-
eases is mainly focused on methylase, which reg-
ulates the targets and signal pathways. In summa-
ry, m6A modification plays an important character 
in atherosclerosis.

Future studies should focus on how crosstalk 
between methylases and demethylases affects 
protein expression, and how m6A binding proteins 
specifically recognize the role of m6A modifica-
tion in the initiation and development of athero-
sclerosis. In addition, whether m6A modification 
is possible to reverse the process by which some 
special cells, such as macrophages and VSMCs, 
undergo phenotypic changes remains to be fur-
ther studied. 

Table I. Multiple functions exerted by m6A regulators in various cells.

Cell type	 Molecule	 Expression	 Target gene	 m6A Levels	 Main Functions	 References

EC	 METTL14	 upregulated	 miR-19a	 increased	 promote the 	 Zhang et al20, 2020
					     proliferation and 
					     invasion	
EC	 METTL14	 upregulated	 FOXO1	 increased	 induce inflammatory 	 Jian et al40, 2020
					     response and plaque 
					     formation	
Macrophage	 METTL14	 downregulated	 SR-B1	 decreased	 regulate cholesterol 	 Park et al41, 2020
					     efflux 	
Macrophage	 METTL3	 upregulated	 STAT1	 increased	 facilitate M1 	 Liu et al56, 2019
					     macrophage
Macrophage	 RBM4	 upregulated	 STAT1	 /	 polarization regulate 
					     glycolysis 
					     and M1 macrophage 
					     polarization	 Huang et al25, 2020

Macrophage	 FTO	 downregulated	 STAT1,	 /	 inhibit both M1 	 Gu et al41, 2020
			   PPAR-γ		  and M2 macrophage 
					     polarization	
Macrophage	 YTHDF2	 upregulated	 /	 /	 regulate the expression 	Yu et al42, 2019
					     of pro-inflammatory 
					     cytokines	
Macrophage	 METTL3	 upregulated	 /	 /	 attenuate the 	 Wang et al43, 2019
					     inflammatory 
					     response	
Macrophage	 METTL3	 upregulated	 circ_0029589	 increased	 promote macrophage 	 Guo et al45, 2020
					     pyroptosis	
SMC	 WTAP	 upregulated	 /	 /	 inhibit the viability, 	 Zhu et al56, 2020
					     proliferation, 
					     and migration	
SMC	 METTL14	 upregulated	 /	 increased	 increase the 	 Chen et al25, 2019
					     calcification and 
					     decrease the vascular 
					     repair function	
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