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Abstract. – OBJECTIVE: Gestational diabetes 
mellitus (GDM) is characterized by new-onset glu-
cose intolerance and is most common in the sec-
ond and third trimesters of pregnancy. Epigenetic 
modifications regulate glucose and its cellular in-
teractions with metabolic pathways. Emerging ev-
idence suggests that epigenetic changes contrib-
ute to the pathophysiology of GDM. Since these 
patients have high glucose levels, the metabol-
ic profiles of the fetus and the mother can affect 
these epigenetic changes. Therefore, we aimed 
to examine the potential alterations in the meth-
ylation profiles of three gene promoters: the au-
toimmune regulator (AIRE) gene, matrix metallo-
proteinase-3 (MMP-3), and calcium voltage-gated 
channel subunit alpha1 G (CACNA1G).

PATIENTS AND METHODS: A total of 44 pa-
tients diagnosed with GDM and 20 controls were in-
volved in the study. DNA isolation and bisulfite mod-
ification were performed from peripheral blood sam-
ples of all patients. Then, the promoter methylation 
status of the AIRE, MMP-3, and CACNA1G genes 
was determined by methylation-specific polymerase 
chain reaction (PCR) methylation-specific (MSP). 

RESULTS: Our results demonstrated that the 
methylation status of AIRE and MMP-3 changed 
to unmethylated in the GDM patients compared 
to healthy pregnant women (p<0.001). However, 
CACNA1G promoter methylation status failed to 
show a significant change between experimen-
tal groups (p>0.05).

CONCLUSIONS: Our results indicated that 
AIRE and MMP-3 are the genes affected by epigen-
etic modification, which could be one of the caus-
es of the long-term metabolic effects in maternal 
and fetal health and can be a target for prevention, 
diagnosis, or treatment for GDM in future studies.
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Introduction

Gestational diabetes mellitus (GDM), which 
has an increasing prevalence worldwide, has con-
tributed to metabolic dysregulation and several dis-
eases in fetuses via epigenetic modifications1. Fun-
damentally, GDM is characterized by new-onset 
glucose intolerance, generally seen in the second 
and third trimesters and diagnosed in about 7% of 
pregnant women and can cause macrosomia, preg-
nancy-induced hypertension, and increase cesare-
an delivery as negative outcomes of pregnancy2,3. 
Predisposition to obesity, metabolic syndrome, and 
diabetes in later life are only a few of the devastat-
ing and long-lasting effects of intrauterine hyper-
glycemia on both the fetuses and their mothers4,5. 
According to a recent study6, women with GDM 
are more likely to develop type 2 diabetes than 
women without GDM. Genetic variables may be 
a confounding element in such intrauterine expo-
sure. Although several mechanisms are claimed to 
be related to the pathophysiology of GDM, many 
studies7 provided strong evidence that overnutri-
tion and obesity, influence metabolic phenotype 
with epigenetic mechanisms in later life. 

Epigenetic mechanisms directly regulate gene 
expression patterns without changing the DNA 
sequence. DNA methylation is mainly studied as 
modification mediated through methylation of the 
C-5 position of the cytosine at cytosine phosphate 
guanine (CpG) dinucleotides8. Because methyl-
ation patterns are also transmitted to the fetus, 
promoter methylation during development and dif-
ferentiation leads to an inactive chromatin struc-
ture and silencing, resulting in long-term conse-
quences. Thus, investigation of these mechanisms 
and identifying possible genes that could result in 
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the fetus’s long-term changes is essential. Several 
studies9 demonstrated changes in the methylation 
profile in GDM patients, and even different results 
in the various tissues. Mass spectrophotometry and 
genome-wide methylome studies10 showed changes 
in several gene promoters in gestational diabetes 
mellitus patients. Nevertheless, there is still a need 
to investigate these possible genes in different pa-
tient populations to understand long-term metabol-
ic consequences in the fetus. 

The methylation profile of AIRE, MMP-3, and 
CACNA1 are some of the genes that showed to 
be changed during GDM. However, knowledge 
about possible changes in their methylation profile 
in different patients is still limited. Additionally, 
based on the understanding that AIRE is one of 
the primary regulators of the autoimmune mod-
ulation in human fetuses, MMP-3 and CACNA1A 
are well-known regulators between maternal and 
fetus blood supply11. Therefore, this study aimed 
to investigate the methylation profile of the GDM 
patients of AIRE, MMP-3, and CACNA1G genes 
with methylation-specific polymerase chain reac-
tion (MS-PCR).

Patients and Methods

Sample Collection
Forty-four patients diagnosed with GDM, and 

twenty healthy controls were consecutively se-
lected from those who applied to the obstetrics 
clinic. The study protocol was approved by the 
Ethics Committee of the Ondokuz Mayıs Univer-
sity (No: 2021/368), and written informed consent 
was obtained from all participants. Diabetes mel-
litus diagnosis has been performed between 24-
28 weeks of pregnancy with a 75 gr oral glucose 
tolerance test as described in 2010 statement from 
the International Association of Diabetes and 
Pregnancy Study Groups (IADPSG)12. If mini-
mum one of the three values is equal to or higher 
than the described criteria (fasting plasma glucose 
≥ 92 mg/dL, one-hour plasma glucose levels ≥ 
180 mg/dL, and two-hour plasma glucose levels ≥ 
153 mg/dL) then GDM is diagnosed. A peripheral 
3 mL blood was collected for DNA isolation and 
methylation analyses in the third trimester before 
delivery from each group of patients. It was also 
collected to another tube for fasting glucose and 
Hemoglobin A1c levels. Body mass index (BMI) 
values were calculated. Patients diagnosed with 
insulin resistance or active smokers before preg-
nancy were excluded from the study. Control pa-

tients were randomly selected from healthy preg-
nant women who applied for routine pregnancy 
follow-up. All experiments were reported accord-
ing to the STROBE guidelines13. 

Analysis of Specimens
Blood samples were collected from all patients 

and carefully stored at -80°C until the day of the 
experiments. DNA was extracted from leuko-
cytes with a commercially available DNA isola-
tion kit (#GB300, Geneaid, New Taipei, Taiwan). 
The purity and concentrations of DNA samples 
were determined by a nanodrop spectrophotome-
ter, and DNA samples which contained impurities 
were excluded from the study.

Bisulfite Modification 
and Methylation-Specific PCR

Following DNA isolation, bisulfite modifica-
tion of DNA samples was carried out with EpiJET 
Bisulfite Conversion Kit (Thermo Fisher Scientif-
ic, Waltham, MA, USA), strictly following the 
manufacturer’s instructions. 

Methylation-specific PCR was performed for 
AIRE, CACNA1G, and MMP-3 promoter regions 
with methylation and unmethylation-specific 
oligonucleotide primer pairs. The primers were 
designed via http://www.urogene.org/cgi-bin/
methprimer/methprimer.cgi, and sequences and 
amplicon lengths were provided in Supplemen-
tary Table I. MS-PCR was carried out in a fi-
nal volume of 25 μl containing DreamTaq™ Hot 
Start DNA Polymerase (Thermo Fisher Scientific, 
Waltham, MA, USA) and under the following cy-
cling conditions for AIRE: initial denaturation at 
95ºC for 3 minutes, followed by 40 cycles at 95ºC 
for the 40 seconds; 51ºC for 40 seconds and 72ºC 
for 70 seconds; CACNA1G: initial denaturation at 
95ºC for 3 minutes, followed by 40 cycles at 95ºC 
for 40 seconds; 50ºC for 40 seconds and 72 ºC for 
70 seconds; MMP-3: initial denaturation at 95ºC 
for 3 minutes, followed by 40 cycles at 95 ºC for 
40 seconds; 57ºC for 40 seconds and 72ºC for 70 
seconds. Final extensions were carried out at 72°C 
for 7 minutes and then maintained at 4ºC. Cells-
to-CpG™ Methylated and Unmethylated gDNA 
Controls (Applied Biosystems, Waltham, MA, 
USA) were used as positive controls. The methyl-
ation status of genes was determined as methylat-
ed when amplification products were detected in 
the reactions performed with primers M or both 
M and U. When amplification products were seen 
in the reactions performed with primers, U only 
was determined as unmethylated.  

https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-TABLE-1-new.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-TABLE-1-new.pdf
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Statistical Analysis
GraphPad Prism version 9.0 (La Jolla, CA, 

USA) was used to collect and analyze all experi-
mental data. Gene methylation/unmethylation ra-
tios were regarded as continuous variables. Mean, 
standard deviation (SD), and median-interquartile 
range (IQR) were used to express quantitative vari-
ables. When the variables were normally distrib-
uted, according to the Kolmogorov-Smirnoff test, 
parametric tests were performed for data analysis. 
Levene’s test was used to determine variance ho-
mogeneity, and Welch’s correction was utilized 
when the variances were not homogeneously dis-
tributed. Non-parametric tests were used, and the 
variables were not normally distributed. The inde-
pendent samples t-test and Mann-Whitney U test 
were used to compare groups. The significance 
level was established at p<0.05.

Results

Characteristics of the Study Population
Laboratory results and demographic infor-

mation are summarized in Table I. Between the 
20 control and 44 GDM patients, there was no 
significant difference in terms of age (29.2±6.1); 
(32.1±6.5), (p=0.103) respectively. GDM group 
had higher BMI and HbA1c values than the con-
trol group (p-values <0.001). Blood glucose val-
ues did not differ between groups (p=0.275).

AIRE and MMP-3 Promoters Strongly
Unmethylated in the GDM

In both groups, the methylation status of 
the AIRE and MMP-3 promoters was analyzed 
(Figures 1 and 2). Our results indicated that the 
methylation level of the AIRE promoter was sig-
nificantly lower in patients with GDM (medi-
an-IQR=1.98-3.75) compared to the control group 
(85.5-12.5) (p<0.001) (Figures 1A and 2). Similar-

ly, the methylation status of MMP-3 promoter was 
discovered to be significantly lower in gestational 
diabetes patients (median-IQR=1.10-0.22) com-
pared to controls (4.72-2.27) (p<0.001, Figures 1B 
and 2) (Table II).

CACNA1G promoter methylation levels 
were found similar between groups. Methyl-
ation-specific PCR results demonstrated that 
there was no significant difference in GDM 
(mean±SD=1.02±0.68) compared to the control 
group (mean±SD 1.03±0.14) in CACNA1 promoter 
methylation levels (p=0.930) (Figures 1C and 2).

Discussion

This study investigated possible changes in 
the methylation profile of three predefined genes, 
AIRE, MMP-3, and CACNA1G, in GDM patients. 
Our results demonstrated that AIRE and MMP-3 
are strongly unmethylated in GDM patients. How-
ever, in contrast to current knowledge, we did not 
find any significant difference between experimen-
tal groups in the context of CACNA1G methylation. 

Several studies1,14,15 indicated that changes in 
the DNA methylation profile in pregnant women 
significantly impact the fetus’s health. Addition-
ally, metabolic changes suddenly occur during 
pregnancy, such as GDM, which is also a signif-
icant concern in the long-term effects on fetus 
health14. Epigenetic modifications are suspicious 
elements in the sudden changes seen in pregnan-
cy15. Therefore, identifying these possible genes 
or modifications is crucial for the treatment and 
follow-up of the health of patients and fetuses. 
Genome-wide association studies1 demonstrated 
that several genes are epigenetically modified, 
and these modifications were also shown to be 
changed depending on the tissue type. Previous 
studies16-18 demonstrated increased global DNA 
methylation in the placenta of GDM patients. 

Table I. Demographic and clinical features of study and control groups.

†Independent samples t-test. Bold prints in the p-values column indicate a statistically significant difference between groups. n, 
number; SD, standard deviation; GDM, Gestational Diabetes Mellitus; BMI, Body Mass Index, HbA1c, glycosylated hemoglobin.

 Control (n=20) GDM (n=44)  
 Mean ± SD Mean ± SD t† p-value

Age 29.2±6.1 32.1±6.5 -1.66    0.103
BMI 26.4±3.5 32.8±5.8 -5.43 <0.001
HbA1c 4.7±0.4 4.9±0.5 -21.8 <0.001
Glucose 120.1±10.1 193.9±13.6 -1.10    0.275
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Figure 1. Methylation profile of 
AIRE (A), MMP-3 (B), and CAC-
NA1G (C) promoter in healthy 
pregnant and gestational diabetes 
patients. Data were expressed as a 
violin box plot. ***p<0.001 vs. the 
control group. bp, base pairs; M, 
methylated PCR product; U, un-
methylated PCR product; m, size 
marker.

Figure 2. The gel picture stands as representative of all groups. AIRE, the autoimmune regulator gene; MMP-3, matrix metallopro-
teinase-3; CACNA1G, calcium voltage-gated channel subunit alpha1; M, methylated PCR product; U, unmethylated PCR product.



Epigenetics in gestational diabetes mellitus

1055

In these studies, several candidate genes were 
identified, such as fat-cell hormones (leptin and 
adiponectin), which are involved in the regula-
tion of energy metabolism and body weight, the 
ATP-binding cassette transporter ABCA1, a pri-
mary regulator of cellular cholesterol, the glu-
cose transporters SLC2A1/GLUT1 and SLC2A3/
GLUT3, and the imprinted gene MEST, which 
plays a role in adiposity development. Dias et al19 
demonstrated that the calmodulin-binding tran-
scription activator 1 (CAMTA1) gene, which reg-
ulates insulin metabolism, is strongly regulated 
by methylation in GDM patients. They also indi-
cated that although methylation is a tissue-specif-
ic process, recent studies20 also demonstrated that 
peripheral blood reflects several pregnancy-asso-
ciated changes in DNA methylation. Kang et al20 
also investigated genome-wide changes in the 
methylation status of diabetes mellitus patients 
and identified 200 differentially methylated loci 
mapped to 151 genes. Because these patterns are 
also affected by the patient population, diet, and 
phenotype, there is still a need for further studies 
on the different patient populations. 

The autoimmune regulator (AIRE) gene is 
located on chromosome 21 (21q22.3) and is cru-
cial to the development of central tolerance. The 
medulla (inner region) of the thymus expresses 
the transcription factor AIRE. It is a component 
of the mechanism that destroys T cells with au-
toimmune tendencies. It makes normal, healthy 
proteins from every part of the body available 
to T cells, and any T cells that react to those 
proteins are eliminated. AIRE gene mutations 
cause a peripheral Treg deficiency and hinder 
the central elimination of self-reactive T cells. 
Therefore, it has an essential role in autoim-
mune diseases, especially in the endocrine sys-
tem leading to the development even at young 
ages21.

Autoimmune Polyglandular Syndrome (APS) 
type 1 is a rare recessive hereditary disease 
caused by the AIRE gene mutation and is charac-
terized by three principal manifestations: chronic 
mucocutaneous candidiasis, chronic hypopara-
thyroidism, and Addison’s syndrome. APS has 
been linked to various autoimmune illnesses and 
can affect several endocrine glands22. AIRE is a 
well-known component of tolerance to self-anti-
gens. Our results suggest that GDM patients with 
unmethylated AIRE may be predisposed to other 
multiple autoimmune endocrinopathies.

Based on its role in autoimmunity, the AIRE 
gene is also related to diabetes mellitus, and its 
pathophysiology is associated with the self-de-
structing antigens of insulin-secreting cells in the 
pancreas23. Based on this knowledge, the possible 
role of the AIRE gene and its epigenetic modifi-
cations could give us clues about the progress of 
GDM and its long-term metabolic effects on the 
fetus. Best of our knowledge, the methylation sta-
tus of the AIRE gene is not investigated in GDM 
patients. So, our study demonstrated that the 
AIRE gene is strongly regulated by methylation 
and found to be unmethylated in GDM patients. 
To demonstrate the changes in the methylation 
status of AIRE caused by diabetes or pregnancy, 
the methylation status of healthy pregnant women 
was also studied and as predicted, was found to be 
highly methylated. 

As a second objective, we also investigated the 
methylation status of the MMP-3 gene, which is a 
well-known regulator of vascular changes between 
mother and fetus. Our findings indicate that MMP-
3 is highly unmethylated in patients with diabetes. 
Baugh et al24 evaluated the role of MMP-3, among 
other parameters, in the process of coronary plaque 
rupture caused by hyperglycemia associated with 
type 2 diabetes. Peeters et al25 discovered a great-
er level of MMP-3 in individuals with albuminuria 

Table II. Comparison of methylated/unmethylated ratios of AIRE, MMP-3 and CACNA1G promoter between groups.

‡Mann-Whitney U test, §independent samples t-test with Welch adjustment. Bold prints in the p-values column indicate 
a statistically significant difference between groups. n, number; SD, standard deviation; IQR, Inter quartile range; GDM, 
Gestational Diabetes Mellitus; AIRE, autoimmune regulator gene; MMP-3, matrix metalloproteinase-3; CACNA1G, calcium 
voltage-gated channel subunit alpha1G.

              Control (n=20)              GDM (n=44) 

 Mean ± SD Median (IQR) Mean ± SD Median (IQR) Statistic p-value

AIRE 74.2±26.0 85.5 (12.5) 3.99+4.06 1.98 (3.75) 2.0‡ <0.001
MMP-3 4.93±1.94 4.72 (2.27) 1.20+0.70 1.10 (0.22) 14.0‡ <0.001
CACNA1G 1.02±0.68 1.02 (0.71) 1.03±1.01 1.03 (0.14) -0.09§    0.930
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during the course of type 1 diabetes, which may 
imply a role in the etiology of problems caused 
by impairments in the regulation of extracellular 
matrix remodeling. There are publications that 
correlate MMP-3 expression with microvascular 
events in patients with type 2 diabetes26,27. Since 
MMP-3 methylation was impaired in the GDM 
group in our study, these patients may be prone to 
microvascular complications and abortion.

We also investigated the possible change in the 
methylation status of the CACNA1G (calcium volt-
age-gated channel subunit alpha1 G) promoter. 
The CACNA1G is located on chromosome 19p13, 
which encodes the main subunit (1A) of the neuro-
nal P/Q type voltage-gated calcium-ion channel28. 
Even though CACNA1G has been linked to both 
GDM29, we were unable to find a significant differ-
ence in methylation status between GDM patients 
and controls. This gene can be studied again in 
larger series and further studies.

Conclusions

In conclusion, our study demonstrated the al-
teration of AIRE and MMP-3 promoter methyla-
tion profiles in GDM. These results suggest that 
changes in the methylation profile of AIRE and 
MMP-3 might play a role in the long-term con-
sequence of GDM. Therefore, additional research 
is required to uncover mechanisms and pathways 
that modulate AIRE and MMP-3 genes as poten-
tial therapeutic targets.
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