
Abstract. – OBJECTIVE: The purpose of this
study was to identify differentially expressed
genes and analysis biological processes related
to renal cell carcinoma.

METHODS: A meta-analysis was performed
using the Rank Product package of Gene Ex-
pression Omnibus datasets of renal cell carcino-
ma. Then Gene Ontology enrichment analyses
and pathway analysis were performed based on
Gene Ontology website and Kyoto Encyclopedia
of Genes and Genomes. Protein-protein interac-
tion network was constructed used Cytoscape
software.

RESULTS: We identified a total of 1992 differ-
entially expressed genes Rank Product package
of renal cell carcinoma, 840 of them were not in-
volved in individual DEGs. Gene Ontology en-
richment analyses showed that those 840 genes
enriched in terms such as response to hormone
stimulus, endogenous stimulus, biological adhe-
sion, and cell proliferation. Pathway analysis
showed that significant pathways included pyru-
vate metabolism, glycerolipid metabolism, com-
plement and coagulation cascades and so on.
Protein-protein interaction network indicated
that MT2A, MYC, CENPF and NEK2 has high de-
gree which participated many interactions.

CONCLUSIONS: Our study displayed genes
that were consistently differentially expressed in
renal cell carcinoma, and the biological path-
ways, protein-protein interaction network associ-
ated with those genes.

Key Words:
Renal cell carcinoma, Differentially expressed

genes, Bioinformatics.

Introduction

Renal cell carcinoma (RCC) is characterized
by a lack of early warning signs and high metas-
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tases1,2. It was the most common form of kidney
cancer, accounted for approximately 3% of adult
malignancy3,4. The incidence of RCC was in-
creasing in the past few years5. The risk factors
for its development are still under intense investi-
gation6.

RCC is a complex disease that many genes
and signaling pathways are involved in its devel-
opment7. Analysis of gene regulation mechanism
can help us understand RCC. Gene regulation
analysis used high-throughput experiment
method such as microarray has increased in re-
cently years. Many differential expression genes
(DEGs) were identified by microarray. Currently,
a significant amount of microarray data has been
produced and deposited in publically-available
data repositories, including Gene Expression
Omnibus (GEO) and Array Express Archive8,9.
These repositories allow researchers to advance
the discovery of genetic and diagnostic signa-
tures by data integration and bioinformatics
analysis, which would provide insights into the
biological mechanisms for RCC. Recently, Feng
et al10 screened 648 down-regulated and 681 up-
regulated DEGs for RCC. Lenburg et al11 identi-
fied 1,234 genes that were more than three-fold
changed in renal tumors. However, the results
were inconformity between studies because of
small samples size.

To better understand the complex pathology
associated with RCC and identify molecular net-
works involved in the disease, we took a systems
biology approach to acquire and integrate
changes of mRNA levels between biopsy sam-
ples from patients with RCC and normal people.
Our approach is to build a more precise target
network from the selected biomarkers for RCC,
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Figure 1. Experimental protocol of this study.
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then further to research those DEGs by function-
al enrichment analysis, pathway enrichment
analysis, and protein-protein interaction (PPI).
The result may provide information for the un-
derstand of RCC.

Materials and Methods

Identification of Gene
Expression Datasets

In the current study, we focused our attention
on the differently expressed genes between nor-
mal kidney and cancerous kidney. The experi-
mental protocol of this study was shown in Fig-
ure 1. On this basic two microarray datasets were
extracted from the NCBI GEO database. We ex-
cluded studies in which samples with other seri-
ous diseases such as diabetes and hepatitis. We
also excluded animal studies and studies in
which microarray data was uncertainty.

Integrated Analysis of DEGs
The identification of DEGs and meta analy-

sis were performed by the Rank Product (RP)
package12. The meta-analysis algorithm imple-
mented in RankProd using two datasets with
different origins (GEO access number:
GSE781, GSE6344).

Each study have two experimental conditions
(treatment versus control). For each gene g in k
replicates i, each examining ni gene, one can cal-
culate the corresponding combined probability as
a rank product , which is the position of gene g
in the list of genes in the ith replicate sorted by
decreasing fold change (FC).

By the Rank Product method, a list of up- or
down-regulated genes were selected based on the
estimated percentage of false-positives (PFP)
predictions, which corresponded to determining
the false discovery rate (FDR) in SAM. Genes
with a PFP ≤ 0.05 were considered differentially
expressed between cases and controls.

Functional and Pathway Enrichment
Analysis

To further investigate the functions of the
DEGs, we performed GO enrichment analysis
and pathway analysis based on Gene Ontology
database (http://www.geneontology.org/) and
KEGG database (www.genome.jp/kegg/) by
DAVID13.

Protein-protein Interaction
Network Construction

The protein-protein interaction (PPI) data were
downloaded from STRING (http://string.embl.de/).
Then the DEGs were imported into the interaction
network and interactions were screened with
both end nodes having DEGs. The networks were
identified using Cytoscape software.

Results

Studies Included and Integrated
Analysis of DEGs

Two gene expression datasets were extracted
from the NCBI GEO database (GEO access
number: GSE781, GSE6344). Both of the two
studies detected the genes expression by two
platforms: GPL 96 (HG-U133A) and GPL 97
(HG-U133B). Therefore, we first identified
DEGs of each platform, and performed the meta-
analysis for the different platforms. We got the
union of genes from the meta-analysis of the two
platforms.

We identified 905 DEGs and 355 DEGs from
the two platforms of GSE 781 datasets, and iden-
tified 1461 DEGs and 918 DEGs from the two
platforms of GSE 6344 datasets. The following
meta analysis identified 700 up-regulation DEGs
and 700 down-regulation DEGs of the platforms
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were most noticeable genes in the PPI network of
up-regulation genes, while CDH1 and EGR1 for
the down-regulation genes.

CDC42 (cell division cycle 42) has the highest
degree in the PPI network of up-regulation genes,
which participated in 28 interactions. CDC42 is a
member of the Rho GTPase subfamily14. It is a
highly conserved small GTPases that regulate the
formation of a variety of actin structures and the
assembly of associated integrin complexes15,16. It
was reported that CDC42 was essential for cell
polarization in several organisms, and controlled
cell polarity in a wide variety of cellular
contexts17,18.

STAT1 (Signal transducer and activator of tran-
scription 1) also has the high degree in the PPI
network of up-regulation genes, which participat-
ed in 21 interactions. STAT1 interacts with p53 to
enhance DNA damage-induced apoptosis19. It
was reported that STAT1 also associated with
chronic lymphocytic leukemia and Alzheimer’s
disease20,21.

MYC oncogenes included c-myc, N-myc and
L-myc. The MYC proto-oncogene encodes a
ubiquitous transcription factor (c-MYC) related
to the control of cell proliferation and differentia-
tion22. MYC overexpression exacerbated genomic
instability and sensitizes cells to apoptotic stim-
uli23. Combined microarray analysis found al-
tered apoptotic balance and distinct expression
signatures of MYC family gene amplification in
small cell lung cancer24. MYC were also associat-
ed with several kinds of cancer such as breast
cancer, prostate cancer, gastrointestinal cancer
and melanoma25.

CDH1 (cadherin 1) has the highest degree in
the PPI network of down-regulation genes, it par-
ticipated in 22 interactions. CDH1 is a conserved
protein that identified as limiting, substrate-spe-
cific activators of APC-dependent proteolysis26.
It was found that down-regulation CDH1 was as-
sociated with poor differentiation and vascular
invasion in colon cancer27. Several researches
suggested that CDH1 mutation was associated
with gastric cancer and colorectal cancer28,29.
Methylation of the CDH1 promoter was thought
as the second genetic hit in hereditary diffuse
gastric cancer30.

EGR1 (early growth response 1) is a primary
response gene which encodes a zinc finger con-
taining protein31. There was an unconformity in
the expression of EGR1 in different cancers. In a
majority of prostate cancers, EGR1 was overex-
pressed and promoted prostate tumor

Figure 2. Venn diagram showing overlap between DEGs
identified from the meta analysis (Meta-DEGs) and those
from each individual data analysis (individual-DEGs).
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GPL 96 (HG-U133A), and identified 503 up-reg-
ulation DEGs and 505 down-regulation DEGs of
the platforms GPL 97 (HG-U133B). There were
840 gained genes and 411 lost genes in this meta
analysis (Figure 2). Lost genes are genes that
identified as DEGs in any individual analysis, but
not in the meta analysis.

Functional and Pathway
Enrichment Analysis

To further investigate the functions of the new
identified 840 genes, we performed GO analysis
and pathway analysis. The top 10 GO terms and
pathway terms were show in Table I and Table II.

Interaction Network of the DEGs
By using Cytoscape software, the interaction

networks were identified. The networks of up-
regulated genes and down-regulated genes were
shown in Figure 3 and Figure 4 respectively. The
genes that degree greater than 10 in PPI network
were show in Table III.

Discussion

RCC is a complex disease, the pathogenesis of
it is not clear. Identify the most important genes
is contribute to understand the pathogenesis. We
first combined the DEGs of microarray data by
meta-analysis, then analysed new identified
genes by functional enrichment analysis, path-
way enrichment analysis, and PPI.

For the DEGs, the topological information as
well as the fold change and p-values of genes are
valuable parameters for evaluation of the impor-
tance of a gene. Among those parameters, we
used the topological information as the main pa-
rameter. We found that CDC42, STAT1 and MYC
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ID Term p value Gene

GO:0009725 Response to 2.10E-05 ALPL, RBP4, ERBB4, ENPP1, PGF, ARNT2, PTGS1, GNG12,
hormone UQCRFS1, AGXT, TGFB1, PRSS8, ALDH1A2, REN, SERPINA1,
stimulus GNG2, THBS1, NEFL, GNG7, GHR, SPP1, PLD1, BCKDHB,

STAT1, ABCG1, SREBF2, BTG2, DUSP1, HMGCS2, CCND2,
PDGFRA, ALDH2, FABP3, AVPR1A, IGFBP2

GO:0009719 Response to 1.50E-04 ALPL, RBP4, ERBB4, ENPP1, PGF, ARNT2, PTGS1,
endogenous GNG12, UQCRFS1, AGXT, TGFB1, PRSS8, ALDH1A2, REN,
stimulus SERPINA1, GNG2, THBS1, NEFL, GNG7, GHR, SPP1, PLD1,

BCKDHB, STAT1, ABCG1, SREBF2, BTG2, DUSP1, HMGCS2,
CCND2, PDGFRA, ALDH2, FABP3, AVPR1A, IGFBP2

GO:0007584 Response to 1.70E-04 ALPL, MUC1, RBP4, SLC8A1, KYNU, STC2, BCKDHB, STAT1,
nutrient TGFB1, ALDH1A2, DUSP1, HMGCS2, GSN, TIE1, ALOX5,

IGFBP2

GO:0001501 Skeletal 2.40E-04 ALPL, RBP4, AEBP1, CASR, ENAM, JAG2, POSTN,
system ATP6V1B1, TGFB1, CHST11, MYC, RUNX2, WWOX, GHR,
development SPP1, SPARC, GAS1, SIX4, COL5A2, ANXA2, CHRDL1,

HOXB6, HOXD4, PDGFRA, TFAP2A, FOXC1, BMPR1B,
PLEKHA1, CDH11, IGFBP5

GO:0010033 Response to 2.50E-04 KYNU, PGF, ARNT2, PTGS1, ILDR2, UQCRFS1,
organic AGXT, TGFB1, EDNRA, GSN, SERPINA1, GNG2, MYC,
substance GNG7, GHR, EGR1, PLD1, HSP90AA1, BTG2, CCND2,

PDGFRA, AMFR, ALPL, RBP4, CYP1B1, ERBB4, ENPP1,
CDH1, GNG12, ATP5G3, PRSS8, ALDH1A2, PLIN2, REN,
COL6A2, HSPA6, THBS1, NEFL, SPP1, SLC8A1, BCKDHB,
STAT1, ABCG1, SREBF2, CORO1A, HMGCS2, DUSP1,
SMPD1, AVPR1A, ALDH2, FABP3, CLEC7A, IGFBP2,

GO:0009991 Response to 3.60E-04 ALPL, MUC1, RBP4, LDHA, KYNU, SLC8A1, STC2, BCKDHB,
extracellular STAT1, PPARGC1A, TGFB1, ALDH1A2, DUSP1, HMGCS2,
stimulus GSN, SFRP2, AVPR1A, TIE1, ALOX5, IGFBP2, SST, SPP1

GO:0048545 Response to 3.90E-04 ALPL, ERBB4, BCKDHB, PTGS1, ARNT2, AGXT, TGFB1,
steroid hormone PRSS8, ALDH1A2, DUSP1, CCND2, PDGFRA, AVPR1A,
stimulus ALDH2, SERPINA1, THBS1, IGFBP2, SST, NEFL, SPP1

GO:0022610 Biological 4.10E-04 AEBP1, CADM4, NRP1, FERMT3, NELL1, FERMT1, POSTN,
adhesion L1CAM, CXCL12, VNN1, TYRO3, F8, PCDH9, CDHR5, RND3,

SLC26A6, CX3CR1, CNTN3, CHL1, DCBLD2, PCDHB14,
IL32, CDH1, SPOCK1, CLDN11, CDH5, CDH6, VCAM1,
SEMA5A, IGSF11, ANXA9, ITGB6, COL6A2, EMB, THBS1,
ANGPTL3, SPP1, NLGN1, NFASC, SDSL, NID1, EMILIN2,
ITGA9, CORO1A, FBLN5, FREM1, CDON, NPHS1, CLEC7A,
PERP, BMPR1B,

GO:0009611 Response to 4.60E-04 DCBLD2, ACVRL1, NRP1, CYSLTR1, MASP1, CLU, C1R,
wounding PXK, BDKRB2, TGFB1, TLR8, CCL20, GSN, PROZ, ITGB6,

MGLL, VNN1, SERPINA1, THBS1, SCNN1B, TFPI2, NEFL,
SPP1, BLNK, F11, PLAT, KLK6, KLF6, CEBPB, F8, SERPING1,
PROC, IL20RB, FBLN5, CX3CR1, PDGFRA, PLLP, CLEC7A,
ALOX5, BMPR1B, PROS1, PLAU

GO:0042127 Regulation 6.50E-04 NAMPT, HMX2, NRP1, ACVRL1, PGF, ARNT2,
of cell PTGS1, JAG2, TNFSF15, TGFB1, EDNRA, GPC3, CHST11,
proliferation MYC, CCDC88A, PPP1CB, VASH1, MYCN, CD86, IL20RB,

BTG2, CCND2, BTG1, NCK1, PDGFRA, FGFR2, RBP4, LST1,
ERBB4, IFITM1, CLU, BDKRB2, CDH5, VCAM1, ALDH1A2,
REG1A, BCL11B, INPP5D, PPAP2A, THBS1, RUNX2, TCIRG1,
SPHK2, SPARC, GAS1, STAT1, KDR, CORO1A, AVPR1A,
FABP3, ATP5A1, SST, PLAU, KCTD11, FABP6, IGFBP5

Table I. The top 10 GO terms from 840 gain genes.



progression32. However, in other tumor types
such as breast cancers and glioblastomas, EGR1
was expressed at low levels and inhibited tumor
growth when overexpressed32.

For the functional and pathway enrichment
analysis, the most significant enriched term was
the GO category of response to hormone stimu-
lus with a p-value of 2.1×10-5. Other significant
GO categories included response to endogenous
stimulus (p = 1.5×10-4) and response to nutrient
(p = 1.7×10-4). Among the pathways enriched in
KEGG analysis, pyruvate metabolism, glyc-
erolipid metabolism, and complement and coagu-
lation cascades were the most significant terms.
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Term p value Count

Pyruvate metabolism 1.10E-03 9
Glycerolipid metabolism 2.40E-03 9
Complement and coagulation 3.50E-03 11
cascades
Valine, leucine and isoleucine 8.40E-03 8
degradation
Sphingolipid metabolism 1.70E-02 7
Tryptophan metabolism 1.90E-02 7
Axon guidance 2.10E-02 14
Propanoate metabolism 2.70E-02 6
Fc gamma R-mediated 3.10E-02 11
phagocytosis
Butanoate metabolism 3.40E-02 6

Table II. The top 10 pathways analysis based on KEGG.

Figure 3. The PPI networks of up-regulated genes. The node stand for the protein (gene), edge stand for the interaction of
proteins (genes). The size of the nodes represent the degree of node, the bigger nodes with higher degree.
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The categories we identified deserve further stud-
ies and may merit further attention and valida-
tion, though it is impossible to discuss all the sig-
nificant functional categories expressed differen-
tially in RCC.

Conclusions

The detailed mechanism of RCC was not clear.
Several genes related RCC were identified in our
study, and the function and signaling pathways
their participated were present systematically,
such as GSN, MYH14, ALDH2, and MDH1.
Those genes might play a role in RCC, more re-
search should focus on them.

Y. Cheng, M. Hong, B. Cheng

Figure 4. The PPI networks of down-regulated genes. The node stand for the protein (gene), edge stand for the interaction
of proteins (genes). The size of the nodes represent the degree of node, the bigger nodes with higher degree.

up-regulated Down-regulated
genes genes Degree

CDC42 – 28
– CDH1 22
STAT1 – 21
MYC – 18
– EGR1 17
TGFB1, VIM SPP1 16
SPARC, PIK3CG – 15
CCL20 – 14
CEBPB, CD86 NR4A1, ADH1B, 13

MYH14
KDR NR2F2, ALDH2, 12

CYP1B1
HCK, GSN, MDH1, MT2A, LDHB, 11
VCAM1 BCR, FGFR2, TFAP2A

Table III. The genes that degree greater than 10 in PPI net-
work.
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