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Abstract. – Severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV2) uses Angio-
tensin- converting enzyme 2 (ACE2) receptors to 
infect host cells which may lead to coronavirus 
disease (COVID-19). Given the presence of ACE2 
receptors in the brain and the critical role of the 
renin-angiotensin system (RAS) in brain func-
tions, special attention to brain microcirculation 
and neuronal inflammation is warranted during 
COVID-19 treatment. 

Neurological complications reported among 
COVID-19 patients range from mild dizziness, 
headache, hypogeusia, hyposmia to severe like 
encephalopathy, stroke, Guillain-Barre Syn-
drome (GBS), CNS demyelination, infarcts, mi-
crohemorrhages and nerve root enhancement.

The pathophysiology of these complications 
is likely via direct viral infection of the CNS and 
PNS tissue or through indirect effects includ-
ing post- viral autoimmune response, neurolog-
ical consequences of sepsis, hyperpyrexia, hy-
poxia and hypercoagulability among critically ill 
COVID-19 patients. 

Further, decreased deformability of red blood 
cells (RBC) may be contributing to inflamma-
tory conditions and hypoxia in COVID-19 pa-
tients. Haptoglobin, hemopexin, heme oxygen-
ase-1 and acetaminophen may be used to main-
tain the integrity of the RBC membrane.
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Introduction

Current SARS-CoV2 pandemic has caused a 
total of 20,439,814 cases with 744,385 deaths 

globally1. SARS- CoV2 belongs to the same fami-
ly of viruses responsible for 2003 SARS pandem-
ic (8422 infected cases and 916 deaths globally)2 
and the outbreak of MERS (2519 cases and 866 
deaths globally)3. Despite having low mortality 
rate, SARS-COV2 is causing higher number of 
deaths than previous two outbreaks owing to 
an increased infectivity and higher transmission 
potential4. 

Coronaviruses (CoVs), single-stranded RNA 
viruses of the order Nidovirales, family Corona-
viridae, and subfamily Coronavirinae5, are clas-
sified into four major groups: α- CoVs, β- CoVs, 
γ- CoVs, and δ- CoVs with 17 subtypes6. Primar-
ily infecting wild animals, CoVs can also infect 
humans presumably owing to the mutation in the 
key regions of genome like large deletions in the 
open reading frame 8 (ORF8) region and muta-
tions in the spike (S) protein. These mutations re-
sulted in the human adaptation of virus infecting 
upper and lower respiratory tract5 leading to 2002 
SARS outbreak7.

The exponential rise of COVID-19 globally 
has made the treatment extremely difficult. Pa-
tients having comorbidities like cardiovascular 
diseases, hypertension, diabetes, chronic kidney 
disease are at significantly high risk of worsen-
ing the disease8. Previous MERS-CoV infection 
exacerbated the underlying conditions like hyper-
tension leading to chronic organ damage9. Having 
similar pathogenicity, SARS-CoV2 infection can 
also progressively deteriorate the symptoms in 
patients with comorbidities.
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Neurological Complications of 
SARS-CoV2 Infection 

The primary focus in ongoing pandemic is 
on acute respiratory distress syndrome (ARDS) 
symptoms, however, emerging evidence warrants 
an improved understanding of associated neu-
rological complications like encephalopathy10, 
meningo-encephalitis11, ischaemic stroke12, acute 
necrotizing encephalopathy13, and GBS14.

Early in pandemic, reports of dizziness, head-
ache, hypogeusia, and hyposmia in almost 37% 
of 214 COVID-19 hospitalized patients indicated 
involvement of nervous system. However, com-
plications like stroke and loss of consciousness 
were largely limited to the severely ill patients15. 

By mid-May, reports of central nervous system 
(CNS) demyelination, infarcts, microhemorrhag-
es, features of posterior reversible encephalopathy 
syndrome, or nerve root enhancement began to 
appear. These extra pulmonary complications are 
possibly caused by direct viral neuronal injury16 
and a secondary hyperinflammation syndrome17. 
Additionally, inflammatory or immune-mediated 
disorders, neurological consequences of sepsis, 
hyperpyrexia, hypoxia, hypercoagulability are 
also contributing to pathogenesis18,19.

The neurological complications of SARS-
CoV2 have similarities to those described in pre-
vious coronavirus epidemics, specifically severe 
acute respiratory syndrome (SARS) in 2003, and 
Middle East acute respiratory syndrome (MERS) 
in 2012. Those reports included encephalopathy, 
encephalitis and both ischemic and hemorrhagic 
stroke caused by hypercoagulability, sepsis, vas-
culitis, and GBS20-22. However, the total numbers 
of patients were smaller and neurological presen-
tations were few in comparison with those being 
witnessed in the current pandemic. 

Early reports of the neurological complications 
in COVID-19 patients included loss of smell and 
taste leading to stroke in almost 3% of the cases15. 
Severe systemic illnesses like sepsis and hypoxia 
were speculated the reason behind the loss of 
smell and taste. However, more recent reports 
show neurological complications like ischemic 
stroke, perfusion changes, myoclonus23 and de-
myelination24 (Figure 1).

Direct Impacts of SARS-CoV-2 on 
the Nervous System

Headache, nausea, vomiting25, anosmia26, age-
usia27 and myalgia8 are the most common and ear-
ly symptoms of neurological involvement. Gen-
erally mild headache, caused by direct infection 

of nervous system by SARS- CoV- 2, may lead 
to the loss of consciousness in the critically ill 
COVID-19 patients. Anosmia and ageusia gener-
ally reported together27,28 in almost two thirds of 
mildly ill COVID-19 patients, are possibly caused 
by infection of oral mucosa by SARS- CoV- 229. 
Brann et al30 showed that SARS-CoV-2 infection 
of non-neuronal olfactory epithelial sustentacular 
cells and olfactory bulb pericytes, and not infec-
tion of olfactory sensory neurons is responsible 
for anosmia in COVID-19 patients.

Myalgia (muscle pain), observed in almost 
half of the COVID-19 patients31, may worsen 
into rhabdomyolysis affecting renal and muscle 
enzymes leading to kidney failure32.

Acute necrotizing encephalopathy causes hem-
orrhage in thalami, medial temporal lobes and 
subinsular regions which may lead to multiple 
organ failure, hypoxemia, systemic inflammation 
and endothelialitis in critically ill with co-mor-
bidities13.

Similarly, an increased risk of stroke is also 
associated with co-morbidities in critically ill 
COVID-19 patients21. Changes in coagulability 
and blood vessels along with hypoxia increase the 
risk of stroke of both arterial and venous cerebro-
vascular origin28,33-35.

Frequent cerebral microbleeds in stroke among 
COVID-19 patients are probably caused by the 
extravasation of red blood cells and direct infec-
tion of endothelial cells leading to endothelial 
dysfunction36,37. Furthermore, thrombosis, pul-
monary embolism, significantly high D-dimer 
levels, along with abnormal coagulation parame-
ters indicate poor prognosis38.

COVID-19 and Ischemic Brain Injury 
Diffused alveolar and interstitial inflammatory 

exudation, edema and the formation of transpar-
ent membranes cause impaired alveolar gas ex-
change and create hypoxia in the CNS after viral 
infection39. Hypoxia further interrupt the blood 
brain barrier (BBB) and cause ischemic stroke, 
neuronal, glial, and vascular injury involving 
critical complement cascade considering immune 
and inflammatory axes40.

Cerebral edema and the cerebral circulation 
disorder worsen in the event of persistent hy-
poxia.  A recent report shows that COVID-19 
patients often suffer from severe hypoxia41 which 
can also induce neuronal cell death and BBB 
dysfunction via activation of inflammatory and 
cytotoxic molecules along with oxidative stress 
signaling42,43. Importantly, ischemic injury not 
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only causes death of brain endothelial cells but 
also atherosclerosis, hemorrhage, brain edema, 
and vascular dementia44-47.

Immune and Inflammatory Response 
Causing Neurological Complications

Viral infections generally trigger an immune 
inflammatory response damaging the nervous 
system through acute disseminated encephalo-
myelitis (ADEM) and acute inflammatory demy-

elinating peripheral neuropathy (AIDP)/ Guil-
lain-Barre syndrome. Early studies have shown 
the association of MERS infection with enceph-
alitis and GBS22. More recently, human corona 
virus infection, other than SARS, has been found 
to be associated with Guillain-Barre syndrome 
with unilateral peripheral facial and bulbar pal-
sy48. Early reports of current pandemic indicated 
the presence of transverse myelitis among hos-
pitalized COVID-19 patients in Wuhan, China49. 

Figure 1. SARS-CoV-2 virus causes a host of neurological complications via direct viral infection of nervous system or 
indirectly through sustained pro inflammatory status, sepsis, thromboembolism, and damage to blood brain barrier. 
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Of late, report of GBS at 0.41% are rare and 
miniscule14 when compared with expected in-
cidence of 0.6–2.7/100 000/year50 warranting 
further epidemiological studies to confirm a 
COVID-19 associated increase in GBS inci-
dence.

Current reports are also showing presence of 
transient encephalopathies with delirium, psy-
chosis and cognitive dysexecutive syndromes36,51. 
However, the magnitude of cognitive dysfunction 
and other psychiatric and psychological factors 
during recovery remains to be studied52.

Another recent article discusses cases of pos-
sible autoimmune encephalitis, clinically similar 
to opsoclonus and myoclonus36,53. Surprisingly, 
NMDAR and LGI1 autoantibodies were not found 
in the patient’s sample indicating that SARS-
CoV-2 may induce autoimmune encephalitis.

Further, rare acute disseminated encephalo-
myelitis (ADEM) typically found in children has 
earlier been reported caused by the human coro-
navirus OC43 infection54 and thus its occurrence 
was not entirely unexpected during the current 
pandemic. The first report was a non– peer re-
viewed article showing acute flaccid paralysis of 
the bilateral lower limbs and urinary and bowel 
incontinence in 66-year-old man55. The clinical 
findings indicated post-infectious acute myelitis; 
however, infection of spinal cord neurons was 
also suspected55. 

A latest report indicates the association of 
COVID-19 with an increased incidence of ADEM, 
however, clinical findings showed an absence of 
SARS-CoV-2 in CSF and brain tissue suggesting 
post-infectious disease mechanism36. 

SARS-CoV2 and ACE2
ACE2, a functional receptor for coronavirus-

es56, is aminopeptidase enzyme present on the 
cells in the lungs, arteries, heart, brain, kidney, 
and intestines57,58. ACE2 reduces blood pressure 
by catalyzing the cleavage of angiotensin II (a va-
soconstrictor peptide) into angiotensin (1-7) (a va-
sodilator)59-61 and thus has a critical role in the 
onset and development of hypertension. ACE2 
presence in the cerebral cortex, striatum, hypo-
thalamus, and brainstem greatly increases the risk 
of direct CoV infection62. 

MERS- CoV experience has clearly established 
the hypertension along with diabetes mellitus, 
chronic lung disease, heart disease, and smoking 
as comorbidities associated with not only primary 
infection risk but also poor prognosis63,64.

A recent genetic study has shown the spatial 

correlation of ACE2 gene with several genes as-
sociated with the organs affected in COVID-19. 
The findings of the study suggest that direct 
viral invasion of brain using ACE2 affects brain 
regions related with esophagus, thyroid, spleen, 
lymph node, bone marrow, testis, ovary, uterus, 
and heart functions65.

COVID-19 and the Regulation of  
Adaptive immune response

The immune and nervous system, both acts 
synergistically to respond to the threat faced 
by the body. Cytokines contribute critically to 
the normal brain development and various neu-
rological disorders through an upregulated cy-
tokines production by T lymphocytes. Further, 
adaptive immune response is largely regulated 
by the balance between mutually exclusive 
pro-inflammatory Th1 and anti-inflammatory 
Th2 cytokines. While Th1 cells activation con-
tributes to CNS inflammation, Th2 cells try to 
downregulate it. 

A striking pro-inflammatory Th1 and Th17 
cytokine response like IFN-γ, TNF-α, IL-15 and 
IL-17 during the acute phase of MERS- CoV in-
fection in humans induced a strong inflammatory 
response worsening the disease66. Cytokine storm 
involving elevated levels of pro-inflammatory IL-
1β, IL-2, IL-7, IL-8, IL-9, IL-10, IL-17, G-CSF, 
GMCSF, IFN-γ, TNF-α, IP10, MCP1, MIP1α and 
MIP1β  cytokines and chemokines in COVID-19 
patients leads to pulmonary edema and damage 
to lung, liver, heart, and kidney8,67.

Th17 type pro-inflammatory cytokine storm 
has been consistently observed in MERS-CoV 
and SARS-CoV patients68,69 along with experi-
mental model of pandemic H1N1 influenza virus 
associated with acute injury and poor progno-
sis68,70.  SARS-CoV2 infection also induces gen-
eration of an important pro-inflammatory IL-6 
cytokine, worsening COVID-19 symptoms71-73.

Systemic inflammatory response syndrome 
(SIRS) or SIRS-like immune disorders causing 
multiple organs failure (MOF) are at the centre 
stage of high mortality associated with MERS, 
SARS and SARS-COV274,75. The over activa-
tion of the immune system known as “cytokine 
storm” in critical cases of COVID-19 infection 
may have led to severe inflammatory state exac-
erbating the ischemia or stroke76.

Further, SARS-COV2 not only infects mac-
rophages, microglia, and astrocytes in the CNS 
but also activate glial cells leading to a chronic 
inflammatory state and brain damage77. 
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RBC Lysis
A recently developed nomogram indicates that 

older age, high serum lactate dehydrogenase, 
C-reactive protein, the coefficient of variation of 
red blood cell distribution width (RDW), blood 
urea nitrogen, direct bilirubin and low albumin 
are associated with severe COVID-19. Amongst 
them, RDW is an important predictor of disease 
severity suggesting the critical role of RBCs in 
the worsening of COVID-1978. Early studies have 
shown RDW as reliable predictor of interstitial 
pneumonia worsening, ARDS79,80, bloodstream 
infection and mortality in critically ill81. 

Pro-inflammatory interleukin 1 (IL-1) and 
tumor necrosis factor-α (TNF-α) cytokine might 
be the reason of high variation in RBC size and 
decreased deformability in COVID-19 patients. 
Additionally, IL1, TNF-α along with IFN-γ may 
also decrease the erythropoiesis by reducing 
renal erythropoietin (EPO) production. They 
may also induce apoptotic death in erythroid 
progenitors and decrease the EPO receptor ex-
pression82.

It is highly likely that less deformability of RBC 
is caused by the sepsis triggered by COVID19 
leading to an increased systemic oxidative in-
jury and damaged organ systems. The systemic 
inflammation may also cause microcirculation 
dysfunction83, vascular reactivity84, platelet ag-
gregation, and white blood cell adhesion to the 
endothelium83. The persistent inflammatory sta-
tus may lead to lipid peroxidation of the RBC 
membrane, alteration of RBC membrane pumps, 
an influx of calcium into the RBC and changes in 
2,3-diphosphoglycerate levels85. 

RBC lysis releases intracellular content in-
cluding cytokines in circulation including many 
inflammatory in nature contributing to the dis-
ease86. Recent reports suggest occurrence of RBC 
lysis in COVID19 patients reflected by high heme 
ions and ferritin level which is also associated 
with poor prognosis. One of the flip sides of RBC 
lysis is the release of cell free hemoglobin (CFH), 
an established mediator of disease and a poor 
prognostic marker in sepsis and ARDS leading to 
multiple organ damage. Low levels of haptoglo-
bin, hemopexin, and heme oxygenase-1 critically 
hamper CFH detoxification87,88. Persistently high 
CFH levels lead to oxidation of ferrous hemoglo-
bin to ferric and the ferryl hemoglobin radical89 
along with peroxidation of membrane lipids and 
an eventual multiple organ failure90.

The RBC lysis after SARS CoV2 infection 
presumably involves these hematological factors 

in COVID-19. Recent reports show that autoim-
mune hemolytic anemia (AIHA)91,92 and Acute 
Hemolytic Anemia (AHA) are associated with 
COVID-1993-95. Autoimmune thrombocytopenic 
purpura and coagulopathy are the other hema-
tological complications reported in COVID-19 
patients91,96,97.

The precise pathophysiology of AIHA remains 
to be elucidated; however, the use of non- vali-
dated hydroxychloroquine has caused serious he-
molysis in glucose- 6- phosphate dehydrogenase 
deficient COVID-19 patients98. 

Therapeutic Interventions Targeting CFH
Early results have shown decreased inflamma-

tion and alveolar fluid accumulation in diseases 
like malaria and sepsis by scavenging CFH by 
using haptoglobin, hemopexin, and heme ox-
ygenase-199. Another therapeutic candidate is 
acetaminophen that can inhibit the peroxidase 
activity of oxidized hemoglobin by reducing the 
ferryl (4+) hemoglobin radical to the ferric (3+) 
state and thus may prevent oxidative injury100 
(Figure 2).

Adjuvant Therapies Targeting Oxidative 
Stress in COVID-19

Oxidative stress, resulting from the disparity 
between the oxidizing system (like free radicals, 
reactive oxygen species, ROS)101 and antioxidant 
systems occurs in many viral infections and can 
also be triggered by SARS- Co-V2102,103. The mi-
tochondrial dysfunction after the viral entry into 
the cell along with cytokine storm is likely the 
sources of ROS leading to hyperinflammation, 
cytopenia and hyperferritinemia in COVID-1917. 
Generally free radicals can be neutralized using 
glutathione, an antioxidant which blocks viral 
replication too104. Certain trace elements like Zinc 
and Selenium, vitamin D, E and C, carotenoids 
and polyphenols can also help in reducing the 
oxidative stress101,103,105.

N Acetyl cysteine (NAC) has been found to 
increase the synthesis of glutathione and gluta-
thione-S-transferase activity in case of sepsis106. 
Additionally, NAC can also down regulate the 
production of IL-8, IL-6, ICAM and activation 
of NF- kB in sepsis and ARDS conditions in 
COVID-19107,108. Early studies showed that vita-
min C and E reduce oxidative stress by blocking 
the NAPH oxidase, the activation of protein phos-
phatase 2A and TNF- α109-112. The adjuvant uses 
of vitamin E and vitamin C in COVID-19 may 
decrease ARDS incidence.
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Like NAC, and melatonin (MT) increases the 
intracellular glutathione synthesis113 and restores 
mitochondrial function in organelles under oxi-
dative stress by reducing the levels of hydrogen 
peroxide114. MT may also reduce the sustained 
inflammatory conditions apart from modulating 
the immune response in COVID-19. 

Quercetin (QRC) inhibits the H+ -ATPase of 
the lysosomal membrane and the ATPase of 
proteins leading to increased bioavailability of 
drugs115-117. QRC may also reduce oxidative stress 
and inflammatory conditions in COVID-19. 

Early evidence shows that pentoxifylline main-
tains mitochondrial viability by increasing the 
glutathione levels118. It further decreases the lev-
els of CRP and blocks TNF- α production119,120 
which may reduce inflammation associated with 
ARDS. 

 
Future Perspectives

Latest reports indicate the use of antiplatelet 
drugs and low molecular weight heparin apart 
from other stroke therapies to manage severe 
strokes associated with COVID-19. However, fur-

Figure 2. Pathogenesis of COVID-19 and potential use of haptoglobin, hemopexin, heme oxygenase-1 and acetaminophen. 
SARS-CoV-2 infection likely induces sepsis resulting in increased inflammation, oxidative stress, cytokine storm and an 
eventual multiple organ damage through RBC lysis. Haptoglobin, hemopexin, heme oxygenase-1 and acetaminophen may 
prevent RBC lysis and in turn organ damage.
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ther randomized trials are needed to determine 
the efficacy and safety of high dose corticoste-
roids and IVIG use in viraemic/ lymphopenic and 
ADEM/ GBS conditions, respectively. Detailed 
clinical, laboratory, biomarker and pathological 
studies are also warranted to elucidate the etiology 
of COVID-19 mediated vascular complications. 

Conclusions

COVID-19, both mild or severe, is causing 
neurological complications like ADEM, brain in-
flammation, stroke and nerve damage across gen-
ders, ethnicities, in patients with or without co-
morbidities. These complications are likely origi-
nating from direct SARS- Co-V2 damage, pro-in-
flammatory cytokine storm setting a persistent 
inflammatory state and vasculopathy influencing 
changes in blood vessels. Sepsis, hypoxia, chang-
es in coagulability and autoantibody production 
to neuronal antigens are also contributing to dis-
ease progression. An improved understanding of 
the strokes, seizure like symptoms which can be 
the early manifestations of abnormal brain swell-
ing, inflammation, neurodegeneration and nerve 
cell death is of the greatest importance for bet-
ter clinical management of COVID-19 patients. 
Furthermore, adjuvant antioxidant therapy may 
reduce oxidative damage.
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