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Abstract. – OBJECTIVE: While the bioinfor-
matic workflow, from quality control to annota-
tion, is quite standardized, the interpretation of 
variants is still a challenge. The decreasing cost 
of massively parallel NGS has produced hun-
dreds of variants per patient to analyze and in-
terpret. The ACMG “Standards and guidelines 
for the interpretation of sequence variants”, 
widely adopted in clinical settings, assume that 
the clinician has a comprehensive knowledge of 
the literature and the disease.

MATERIALS AND METHODS: To semi-autom-
atize the application of the guidelines, we de-
cided to develop an algorithm that exploits Var-
Some, a widely used platform that interprets 
variants on the basis of information from more 
than 70 genome databases. 

RESULTS: Here we explain how we integrat-
ed VarSome API into our existing clinical diag-
nostic pipeline for NGS data to obtain validated 
reproducible results as indicated by accuracy, 
sensitivity and specificity. 

CONCLUSIONS: We validated the automated 
pipeline to be sure that it was doing what we ex-
pected. We obtained 100% sensitivity, specifici-
ty and accuracy, confirming that it was suitable 
for use in a diagnostic setting.
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Introduction

The massively parallel sequencing technology 
known as next-generation sequencing (NGS) has 
revolutionized genomic research. The fast and af-
fordable simultaneous interrogation of thousands 
of target regions for genetic variants is allowing 
many gene-disease associations to be discovered, 
increasing our understanding in various fields 
of medicine, ranging from genetics to oncolo-

gy and microbiology. Unlike previous diagnostic 
sequencing technologies, NGS can deliver an 
analysis of DNA sequences of a sample in a single 
test, thus providing a better idea of the diagnosis, 
but also an enormous quantity of data to analyze. 
Interpreting the clinical significance of hundreds 
and thousands of variants produced per individu-
al by NGS-based tests is a big challenge. 

The ACMG “Standards and Guidelines for 
the Interpretation of Sequence Variants”1, wide-
ly adopted in clinical settings, assumes that 
clinicians have a comprehensive knowledge of 
the literature and the disease. We decided to 
develop an algorithm that exploits VarSome2, a 
widely used platform for variant interpretation 
that uses information from more than 70 genome 
databases3.

Many difficulties need to be addressed when 
doing variant interpretation: combination of dif-
ferent types of information4, frequency threshold 
estimation5, appropriate interpretation of clinical 
context6, continuous incorporation of updated 
knowledge and lack of inter-laboratory consisten-
cy in interpreting variants7. To tackle these dif-
ficulties and to semi-automate application of the 
guidelines, we selected VarSome, as it integrates 
data from different databases, keeping it updated, 
and defines well-tested thresholds for the differ-
ent criteria of the ACMG guidelines. 

When analyzing genetic data for diagnostic 
purposes, the workflow, from sequencing to bio-
informatic analysis, must be precise, reproducible 
and validated. To reduce human error, our lab de-
veloped an automated pipeline for bioinformatic 
analysis8. By introducing semi-automated variant 
interpretation, by means of VarSome, we made 
variant interpretation part of our precise repro-
ducible workflow and enabled addition of expert 
knowledge from the scientific community.
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In this paper we describe how we integrated 
VarSome into our existing validated, standard-
ized, reproducible analysis pipeline for NGS data 
to interpret variants and how we assessed the 
results produced.

Materials and Methods

After the sequencing phase, the pipeline (Fig-
ure 1) analyzes the sequences to recognize vari-
ants and annotate them. After annotation, vari-
ants must be interpreted to distinguish common 
and benign ones from those with pathogenic 
potential. In this section we describe how we per-
form sequencing, bioinformatic analysis and vari-
ant interpretation with the inclusion of VarSome.

Sequencing and Bioinformatic Analysis
The NGS data analysis workflow includes 

DNA extraction, library preparation, sequencing 
and bioinformatic analysis of the data. The DNA 
samples were processed using a MiSeq personal 
sequencer (Illumina, San Diego, CA, USA) with 
paired-end long reads of 150 bp, according to the 
manufacturer’s instructions. The probe set to cap-
ture the target regions, comprising coding exons 
and 15 bp flanking regions of each gene in the 
panel, was designed using software from Twist 
Bioscience9 and was based on the hg38 genome 
version. 

Bioinformatic analysis includes the steps qual-
ity control, mapping against the genome and final 
annotation of variants, as previously described8. 
Briefly, raw reads undergo a series of quality 
controls by Fastx-toolkit10 to reduce the number 
of error-prone reads and improve the quality of 

subsequent steps. The sequences generated are 
aligned against the reference sequence (hg3811) 
by BWA software12,13, to identify variants in the 
sample by GATK14,15 variant calling.

Then, the variants are annotated using VEP 
(Variant Effect Predictor)16: the gene and tran-
script related to the macro-areas, along with their 
location, are assigned to each variant. Other im-
portant information, like minor allele frequency 
(MAF) from GnomAD Exome17, is also retrieved 
for sub-populations and the whole population, for 
use in subsequent steps. The APPRIS database18 
is used to select and store only annotations asso-
ciated with transcripts indicated by the known 
Ensembl dataset, excluding other transcripts.

VarSome
VarSome (varsome.com) is a search engine, 

aggregator and impact analysis tool for human 
genetic variations designed to share global ex-
pertise in human variants using data from over 70 
genome databases2,3.

VarSome API19 is the high-performance vari-
ant annotation Application Programming Inter-
face (API) of VarSome, designed to provide a 
tool that can be queried to extract information. 
All the information from VarSome used in our 
software was collected using the Stable API 
environment20, which is updated four times per 
year. We decided to use this environment be-
cause it allows greater interpretative stability 
in selecting variants to report. Stable API doc-
umentation can be found at this link: https://
stable-api.varsome.com/.

VarSome implements most of the rules of the 
guidelines on the basis of thresholds that have 
been carefully adjusted by statistical regression 

Figure 1. Workflow from samples to variant selection.
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against a large population of reliably curated 
variants21. When querying VarSome API, the data 
is returned using JSON, which is easily accessed 
from Python, from which our script extracts 
the requested information. On how we installed 
and used VarSome API, see https://github.com/
saphetor/varsome-api-client-python documenta-
tion.

Users can also submit their own contributions 
to VarSome, linking variants to phenotypes, dis-
eases or articles, and can make their own patho-
genicity assessments. VarSome considers these 
submissions during the interpretation phase, 
combining knowledge of experts with data from 
genome databases.

Algorithm for VarSome Integration
“Standards and guidelines for the interpre-

tation of sequence variants” was published in 
2015 by Richards et al1. It describes a set of 
rules for classifying ‘Benign’, ‘Likely Benign’, 
‘VUS’ (Variant of Uncertain Significance), ‘Like-
ly Pathogenic’ or ‘Pathogenic’ variants. The in-
terpretation phase (Figure 2) needs to distinguish 
common and benign from potentially pathogenic 
variants. This distinction is done by filtering to 
exclude variants found in a large proportion of the 
healthy population.

To do this filtering, we first calculate MAF 
(Minor Allele Frequency, called decisionMAF), 
namely the frequency with which the second 
most common allele occurs in a given popula-
tion. This frequency is calculated by integrating 
frequencies from dbNSFP22, VEP and gnomAD17 
and then inverting it, by doing 100%-decision-
MAF, when decisionMAF is over 90%. This 

step is done because variants having a high de-
cisionMAF are probably wildtype alleles in the 
reference genome.

The MAF filter excludes variants having a 
decisionMAF over 3%, as they probably have a 
pathogenic role. This threshold was chosen as a 
good compromise between 1% of the definition 
of polymorphism, that excludes some variants 
that cause diseases, and the computational cost of 
analyzing all the variants.

Then, variant interpretation and MAF are ex-
tracted from VarSome. The newly extracted MAF 
(called definitiveMAF) allows us to integrate the 
existing decisionMAF on splicing variants with 
data from the scSNV database23. Then, we fil-
ter ‘Benign’ or ‘Likely Benign’ variants except 
those in our exception files. This file contains a 
list of variants, from Ghosh et al 201824, that are 
known to be pathogenic even if they have a high 
allele frequency. For the code for this project, see 
https://gitlab.com/magieuregio/automate_vari-
ant_interpretation.

Results

To check whether our pipeline was working as 
expected, we tested the first 10 samples analyzed 
(Table I). We first ascertained that our pipeline 
discarded variants with a decisionMAF and a de-
finitiveMAF greater that 3%, except for exception 
variants. Then, we checked that all ‘VUS’, ‘Likely 
Pathogenic’ and ‘Pathogenic’ variants were se-
lected and that ‘Benign’ and ‘Likely benign’ were 
not (except the exceptions). Then we checked that 
variants in exceptions were correctly marked.

Figure 2. Already annotated variants go through different steps in order to be interpreted: calculation, inversion and filtering 
on decisionMAF, calculation of definitive MAF, calculation of variant interpretation and interpretation filtering to finally 
obtain selected variants.
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We checked the number of True Positive (TP), 
True Negative (TN), False Positive (FP) and 
False Negative (FN) variants to calculate sensi-
tivity  , specificity  and accuracy  We obtained 
100% sensitivity, specificity and accuracy, allow-
ing the script to be integrated into the pipeline.

We also tested 70 retinal dystrophy, macular 
dystrophy and cone dystrophy samples (see Sup-
plementary Table I for a list of the genes ana-
lyzed) to determine the impact of our algorithm. 
No variants were selected in 15.7% of the 70 sam-
ples (Figure 3), meaning that for these patients a 
negative report can be issued. For 50% of sam-
ples, we found at least one ‘Pathogenic’ or ‘Likely 
pathogenic’ variant, which after endorsement by 

an expert geneticist, can lead to a conclusive pos-
itive test (see Supplementary Table II for the list 
of variants selected by the algorithm).

Discussion

Variant interpretation is a challenging task be-
cause it must integrate information from different 
sources, determine frequency thresholds and under-
stand clinical context. The most widely used clinical 
guidelines are those of the ACMG: “Standards and 
guidelines for the interpretation of sequence vari-
ants”, which assume that clinicians have compre-
hensive knowledge of the literature and the disease.

To overcome these difficulties, we integrated 
VarSome, a tool that interprets variants on data 
from different sources and on thresholds adjusted 
by statistical regression against a large population, 
into our diagnostic pipeline. In particular, we 
chose VarSome API which allows a higher level 
of customization of the analysis and cost reduction 
with respect to other commercial solutions.

The tool was integrated in our existing Pipe-
MAGI, a standardized, validated, replicable bio-
informatic pipeline for the analysis of NGS panel 
data developed by MAGI. Though developed for 
internal use, the pipeline integrated with Var-
Some introduced inputs from the international 
scientific community.

Conclusions

We validated the automated pipeline to be sure 
that it was doing what we expected. We obtained 
100% sensitivity, specificity and accuracy, con-

Table I. Results of evaluation on 10 samples. 

	 Sample	 FP	 FN	 TP	 TN	 Sensitivity	 Specificity	 Accuracy

RE1756.2021	 0	 0	 1	     7	 100	 100	 100
RE1757.2021	 0	 0	 1	   10	 100	 100	 100
RE1758.2021	 0	 0	 2	     8	 100	 100	 100
RE1759.2021	 0	 0	 1	     6	 100	 100	 100
RE1760.2021	 0	 0	 2	     4	 100	 100	 100
RE1755.2021	 0	 0	 2	   30	 100	 100	 100
RE1752.2021	 0	 0	 4	 134	 100	 100	 100
RE1753.2021	 0	 0	 4	 118	 100	 100	 100
RE1754.2021	 0	 0	 1	   11	 100	 100	 100
RE1761.2021	 0	 0	 3	 150	 100	 100	 100
Total	 0	 0	 21	 478	 100	 100	 100

FN = False negative; FP = False positive; TN = True negative; TP = True positive.

Figure 3. Group 1 includes samples in which at least one 
‘Likely Pathogenic’ or ‘Pathogenic’, variant was found; 
Group 2 includes samples in which no variant was selected; 
Group 3 includes samples in which only ‘Variants of Uncer-
tain Significance’ were selected.

https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Table-II-Prova.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Table-I.pdf
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firming that it was suitable for use in a diagnostic 
setting. We also tested it on 70 retinal dystrophy, 
macular dystrophy and cone dystrophy samples, 
obtaining at least one potentially pathogenic vari-
ant that led to a positive result in 50% of samples, 
while for 15.7% of samples we already had a con-
clusive negative report at this step.

How we adapted VarSome automatic variant 
interpretation to our clinical workflow, integrat-
ing the most recent guidelines (such as ACGS 
Best Practice Guidelines for Variant Classifica-
tion 2019-202025) and broadening some criteria, 
will be discussed in a future paper.
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