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Abstract. – OBJECTIVE: The aim of this stu-
dy was to assess whether blood mononuclear 
cells (PBMC) from Hashimoto’s thyroiditis (HT) 
and control women, were protected from in vi-
tro H2O2-induced oxidative stress after addition 
of antioxidants.

PATIENTS AND METHODS: PBMC, from 8 
HT women and 3 healthy women (controls), 
were cultured in the presence of 200 µM H2O2 
alone, with subsequent addition of myo-inosi-
tol (Myo) (0.25, 0.5, 1.0 µM), selenomethionine 
(SelMet) (0.25, 0.5, 1.0 µM), or their combination 
(0.25+0.25, 0.5+0.5, 1.0+1.0 µM). PBMC prolife-
ration, vitality, genotoxicity (Comet score) and 
secretion in the medium of the chemokines 
CXCL10 [IP10], CCL2 e CXCL9 [MIG] were the 
indices measured.

RESULTS: PBMC proliferation was decreased 
by H2O2 alone, and it decreased further and 
dose-dependently in either group (greatest de-
crease with Myo+SelMet in HT). H2O2 alone de-
creased vitality by 5% in controls and 10% in the 
HT group, but vitality was rescued by the three 
additions. The addition of H2O2 alone increased 
the Comet score at +505% above baseline in 
controls and +707% in HT women. In either 
group, each addition dose-dependently con-
trasted genotoxicity. Concentrations of chemo-
kines in the medium were increased by H2O2 
alone, and in HT women more than in controls. 
Each addition dose-dependently decreased 
these concentrations in either group, and often 
below baseline levels, with Myo+SelMet being 
the most potent addition (up to approximately 
-80% of baseline). 

CONCLUSIONS: The tested antioxidants exert 
beneficial effects on PBMC exposed in vitro to 
H2O2-induced oxidative stress in both control and 
HT women. Particularly, the association Myo+Sel-
Met is the most effective. After the demonstration 
of a favorable in vitro outcomes in a large cohort 
of HT patients, we could predict favorable in vivo 
outcomes given by the same supplement. Thus, 
one can select HT patients with a high chance of 
benefit from supplementation.  
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Introduction

Primary hypothyroidism is a common disor-
der, with a prevalence of approximately 5% and 
incidence of approximately 250/100,000 per year 
in the adult population, but both prevalence and 
incidence keep raising1,2. The subclinical form of 
primary hypothyroidism (also known as initial or 
mild hypothyroidism) is much more frequent than 
the overt form. The leading cause of primary hy-
pothyroidism is Hashimoto’s thyroiditis (HT), the 
annual frequency of which has increased marked-
ly starting from the early/mid 90’s3-5.

Enhanced oxidative stress was documented 
in autoimmune thyroid disease (AITD)6-9. Over-
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production and/or decreased disposal of hydro-
gen peroxide (H2O2), a reactive oxygen species, 
is involved in the pathogenesis of the inflamma-
tion of AITD and AITD-associated apoptosis of 
thyrocytes10,11. Indeed, H2O2 participates in the 
regulation of multiple inflammatory pathways12, 
and culturing cells in the presence of H2O2 is a 
practical way to induce oxidative stress in sev-
eral experimental settings. Illustratively, such 
cultured human or animal cells are as diverse 
as thyrocytes11, cardiomyocytes13, neurons14, glia 
cells15,16, gingival fibroblasts17, pancreatic beta 
cells18,19, myoblasts20, retinal pigment epithelium21 
stem cells22, peripheral blood mononuclear cells 
(PBMC)9,23,24, and even embryos25. 

Among other aspects, including environ-
mental factors that trigger intrathyroid oxidative 
stress26, AITD is characterized by intrathyroid 
lymphocytic infiltration and overproduction of 
cytokines by lymphocytes and thyrocytes, includ-
ing the small chemotactic cytokines (chemok-
ines), the secretion of which is often induced by 
pro-inflammatory cytokines themselves27.

CCL2 is the prototype Th2 chemokine, that is 
produced by lymphocytes and other cells28,29. The 
interferon gamma (IFN-γ)-inducible protein 10 
(IP-10, also called CXCL10), and monokine indu-
ced by IFN-γ (MIG/CXCL9) were first recognized 
as a chemokine IFN-γ-induced30-32. CXCL10 and 
CXCL9 bind to chemokine (C-X-C motif) recep-
tor 3 (CXCR3), contributing to the pathogenesis 
of various organ-specific autoimmune diseases 
(i.e. Graves’ disease [GD] and ophthalmopathy, 
type 1 diabetes mellitus), or systemic autoim-
mune diseases, (i.e. mixed cryoglobulinemia, sy-
stemic lupus erythematosus, Sjogren syndrome 
or systemic sclerosis)33,34,35,36,37. The secretion of 
CXCL9 and CXCL10 by CD4+, CD8+, and natu-
ral killer (NK) depends on IFN-γ. Stimulated by 
IFN-γ, CXCL10 is secreted by thyrocytes or other 
cell types35,36. Hence, high CXCL9, CXCL10 le-
vels in peripheral fluids are a marker of a T helper 
(Th)1 orientated immune response37. Serum levels 
of both CXCL9 and CXCL10 in patients with HT 
are significantly greater than in patients with non-
autoimmune nodular goiter or healthy controls38. 
In HT patients, serum CXCL9 levels were signif-
icantly higher in those with a hypoechoic pattern, 
and in those with hypothyroidism. In the same 
HT patients, CXCL10 was significantly higher 
in those with a hypoechoic pattern (p = 0.008), 
and in those with hypothyroidism38. CXCL9 and 
CXCL10 serum levels were significantly related 
to each other (r = 0.719, p < 0.001) in HT patients38.

A nutraceutical approach for the medical man-
agement of AITD with selenium39-42, selenium plus 
myo-inositol (Myo)43 or L-carnitine44,45 has ap-
peared in the literature. A common denominator 
among these substances is antioxidant activity39,46-48. 
In studies on HT patients supplemented with sele-
nium (most often at 200 µg/d) for 3 to 12 months, 
the outcome has been the decline in thyroperoxidase 
autoantibodies (TPOAb)39. Supplementation with 
selenomethionine (SelMet) performed better than 
supplementation with sodium selenite. As described 
below under Discussion, beneficial effects on indi-
ces of thyroid autoimmunity and thyroid function 
were obtained in TPOAb positive women treated 
with SelMet alone or SelMet plus Myo41,43. 

Based on all this knowledge, the aim of the 
pilot study reported here was to check whether 
experiments on PBMC from euthyroid HT pa-
tients that were exposed, in vitro, to 200 µM H2O2 
would have provided evidence for protection 
conferred by Myo, SelMet or their association 
(Myo+SelMet). The main interest was for a reduc-
tion of CXCL10 (IP10), CCL2 e CXCL9 (MIG).

Patients and Methods

To avoid confounding variables and appreciate the 
effect of thyroid autoimmunity per se, upon informed 
written consent we enrolled a group of 8 non-smok-
ing, euthyroid HT women with no personal history 
of autoimmune diseases other than HT, and under no 
drug known to alter thyroid function tests and/or to 
trigger thyroid autoimmunity. However, they had thy-
roiditis demonstrable by positivity for serum thyroid 
autoantibodies (TPOAb and thyroglobulin antibodies 
[TgAb]) and sonographic signs of inflammation. We 
anticipated that these criteria would have allowed en-
rollment of a limited number of women. 

For the same aim of avoiding confounding 
variables, to form the control group we aimed at 
enrolling 3 healthy, non-smoking age-matched 
euthyroid women with no personal history of any 
autoimmune disorder, and under no drug known 
to alter thyroid function tests and/or to trigger 
thyroid autoimmunity. Before enrollment and 
upon informed written consent, thyroid sonog-
raphy demonstrated normal thyroid volume and 
absence of both nodules and sonographic signs of 
thyroiditis. Again, these criteria allowed enroll-
ment of a limited number of women.

No Ethic Committee approval was required, 
as the study involved neither in vivo administra-
tion of compounds nor invasive procedures.
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General Outline of the Experiments
Experiments were aimed at stressing pe-

ripheral blood mononuclear cells (PBMC) with 
H2O2 and then assess whether, in the presence of 
H2O2, the addition of equimolar concentrations 
of Myo alone, SelMet alone or a combination of 
Myo+SelMet would have protected PBMC from 
the effects given by H2O2. Myo-inositol (Myo) 
was obtained by Lo.Li Pharma S.r.l (Rome, Italy) 
and L-selenomethionine was purchased from Sig-
ma-Aldrich Chemie (Darmstadt, Germany). Both 
Myo and SelMet were dissolved in sterile phos-
phate buffered saline (PBS) prior to use.

We used a fixed concentration (200 µM) of 
H2O2 and three concentrations of each of the 
above compounds (0.25, 0.5 and 1.0 µM) based on 
clear-cut results of dose-dependent inhibition of 
H2O2-induced genotoxicity on initial experiments. 
A number of cell culture models have been set up 
using 200 µM H2O2

14,18-20,22,24,25 or concentrations 
of H2O2 that include 200 µM11,15,21. Worthy of note, 
because the molecular weights of SelMet and se-
lenium are 196.1 and 79.0, respectively, 0.25, 0.5 
and 1.0 µM SelMet correspond to 0.1, 0.2 and 0.4 
µM elementary selenium. 

The indices (outcomes) evaluated were PBMC 
proliferation, viability, genotoxicity, secretion 
into the medium of three chemokines.

Cells and Medium 
Blood was collected by venipuncture using tubes 

containing K-EDTA. Blood samples were processed 
for PBMC isolation by density gradient centrifuga-
tion with Lympholyte® cell separation media (Ced-
erlane, Burlington, Ontario, Canada). Lymphocytes 
were cultured in RPMI-1640 medium (Euroclone 
S.p.A., Pero (Milan), Italy), supplemented with 
10% fetal calf serum (Euroclone), penicillin (5 µg/
mL), streptomycin (10 µg/mL) and 1% MEM amino 
acid solution (Sigma-Aldrich, St. Louis, MO, USA). 
PBMC were cultured at 37°C with 5% CO2 in 96 
wells microtiter plates for five days. However, a 30 
µL aliquot of the freshly collected blood was used 
immediately for the genotoxicity experiments using 
a protocol described elsewhere49.

Cell Proliferation and Viability
PBMC, isolated from 8 HT and 3 control 

women, were plated in 96-well plates at a seeding 
concentration of 100,000 per well in the absence 
(baseline) or presence of 200 µM H2O2. In desig-
nated wells, further to 200 µM H2O2, we added 
specified concentrations of Myo alone (0.25, 0.5 
or 1.0 µM), SelMet alone (0.25, 0.5 or 1.0 µM), or 

Myo plus SelMet (0.25+0.25, 0.5+0.5 or 1.0+1.0 
µM). PMBC were cultured in the above medium 
and after 5 days, cells were harvested and as-
sessed for proliferation and viability. Cell culture 
supernatants were collected for chemokine assays 
(see below). This scheme of culture and additions 
was applied for the other experiments described 
below, except for the Comet assay in which an ali-
quot of blood sample was used separately.

After harvesting from the wells, PBMC were di-
luted in PBS, and counted in a Neubauer counting 
chamber using a 0.5% trypan blue staining solution. 
As known, nonviable cells internalize the solution 
and appear blue, whereas viable cells with intact cell 
membranes, do not internalize the dye. Trypan blue 
positive and negative cells were counted using a he-
mocytometer in an optic microscope to estimate the 
% change in the number of viable cells.

Trypan blue dye exclusion assay was used 
to assess actual viable cell number, but it lacks 
sensitivity compared to other cell viability tests. 
For this reason, PBMC viability was also evalu-
ated by a resazurin-based assay (CellTiter-Blue; 
Promega, Madison, WI, USA) which uses the 
indicator dye resazurin to measure the metabolic 
capacity of cells. Nonviable cells rapidly lose the 
ability to reduce resazurin and do not generate 
the fluorescent signal of resorufin (λex= 560 nm, 
λem= 590 nm), which was measured with a plate 
reader (SynergyTM HT; Biotek, Winooski, VT, 
USA). These assays were performed in triplicate. 

Data were normalized as percentage of con-
trol. Thus, PBMC incubated in the absence of 
H2O2 and any of Myo, SelMet or Myo+SelMet 
were considered as 100%.

Genotoxicity (Comet Assay) 
As known, the Comet assay is a simple and sen-

sitive genotoxicity test for the detection of deoxyri-
bonucleic acid (DNA) damage in eukaryotic cells.

As said above, a 30 µL aliquot of blood was incu-
bated with 30 µL Myo, SelMet or their combination 
at 37 °C for 1h. As stated above, the final concentra-
tions of Myo or SelMet were 0.25, 0.5 and 1.0 µM; 
the final concentrations of the combination were 
0.25 µM Myo plus 0.25 µM SelMet, 0.5 µM Myo 
plus 0.5 µM SelMet, and 1.0 µM Myo plus 1.0 µM 
SelMet. Cell suspensions were then processed for 
the alkaline version of the Comet assay as described 
elsewhere49, including ensuring protection from 
light to avoid further DNA damage. Experiments 
were repeated twice, with each condition (baseline, 
H202, and each of the three concentrations of the 
three additions) being tested in triplicate. 
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At the end of the electrophoretic procedure49, 
slides (three per each condition) containing pro-
cessed PBMC were stained with 5 µg/ml propid-
ium iodide and examined at 100X magnification 
with an E800 microscope (Nikon, Düsseldorf, 
Germany) equipped to detect the fluorescence of 
propidium iodide. One hundred cells were ran-
domly selected in each slide and scored 0 (no 
damage) to 4 (very significant damage), based on 
comet-tail length. The final Comet score was cal-
culated by the formula: (n cells scored 1) + (2 x 
n cells scored 1) + (3 x n cells scored 3) + (4 x n 
cells scored 4).

Chemokine Assay
CXCL10 (IP-10), CCL2 (MCP-1) and CXCL9 

(MIG) levels in cell culture supernatant were as-
sayed by a quantitative sandwich immunoassay 
kits (R&D Systems, Minneapolis, MN, USA), 
with a sensitivity range of 0.41-4.46 pg/ml, 0.57-
10.0 pg/ml, and 1.37-11.31 pg/ml, respectively. 
The absorbance was measured at 450 nm, with 
correction wavelength set at 540 nm, using a plate 
reader (SynergyTM HT; Biotek, Winooski, VT, 
USA). Experiments were performed in triplicate. 
When the assay is performed in cell culture su-
pernatants, the intra-assay coefficients of varia-
tions (CV) for CXCL10, CCL2, and CXCL9 are 
3.0, 3.6, and 4.2%. The inter-assay CV are 6.9, 7.2, 
and 4.8%.

Statistical Analysis
Data are reported as mean ± SD and median. 

Except for vitality and Comet score (genotoxicity), 
the other variables had nongaussian distribution. 
Differences between continuous variables were 
analyzed by the two-sided Wilcoxon rank sum 
test, except vitality and Comet score (differences 
analyzed by ANOVA). A p-value <0.05 was con-
sidered statistically significant, while a p-value be-
tween 0.10 and 0.05 as a borderline significant.

Results 

Characteristics of the Healthy Group 
and HT Group

Pertinent data are shown in Table I. Notewor-
thy in the HT group (8 women) is that, though 
serum hormones were within normal limits, FT4 
was 9% lower, FT3 5% lower and TSH 39% great-
er than in the healthy group (3 women). This pat-
tern was strongly suggestive of an initial decline 
in thyroid function.

Proliferation and Vitality
After 5 days of culture in the absence of H2O2 

and any addition (baseline), the median number 
of PBMC per well was 92,000 for the healthy 
group and 92,500 for the HT group, a physiolog-
ical but statistically significant decline in either 
group (p = 0.008 and p = 0.005, respectively). The 
corresponding mean± SD numbers were 92,890 
± 11,973 and 90,600 ± 14,284, which were statis-
tically similar (p = 0.60). In the presence of 200 
µM H2O2 alone, there was a median decrease of 
4.2% (-6.2± 5.2%, p = 0.008 vs baseline) in the 
healthy group and 7.8% (-10.4 ± 7.5%, p = 0.005 
vs baseline) in the HT group (Figure 1). The dif-
ference between these two decreases in one group 
compared with the other was borderline signifi-
cant (p = 0.092). 

When the PBMC of healthy women were 
cultured in the presence of H2O2 plus any of the 
three compounds (Figure 1, left panel), there was 
a further decline in the number of PBMC, with 
an evident dose-dependency displayed by Myo. 
Due to the small standard deviation, the highest 
concentration of Myo alone was the sole addition 
that resulted at least borderline significantly low-
er compared to H2O2 alone (p = 0.07) and also 
statistically lower than baseline (p = 0.04) (Fig-
ure 1). The highest inhibition of proliferation was 
observed at the two highest concentrations of 

Index	 Reference range	 Hashimoto’ thyroiditis (n=8)	 Healthy controls (n=3)

Age, years	 N/A	 43.1 ± 11.3 [40.5] (31-61)	 45.3 ± 8.7 [43] (38-55)
TSH, mU/L	 0.27-4.2	 1.96 ± 0.63 [1.93] (0.89-2.98)	 1.41 ± 0.65 [1.30] (0.82-2.1)
FT3, pg/ml	 2.0-4.2	 2.88 ± 0.21 [2.90] (2.57-3.15 )	 3.03 ± 0.55 [3.20 ] (2.4-3.5)
FT4, pg/ml	 8.5-17.1	 12.1 ± 1.9 [11.0] (10.4-15.6)	 13.3 ± 1.9 [13.6] (11.3-15)
TgAb, UI/ml	 0-115	 212 ± 98.9 [160] (144-347)	 18.0 ± 10.4 [13] (11-30)
TPOAb, UI/ml	 0-34	 199 ± 236.4 [84] (42-619)	 6.7 ± 3.4 [6.1] (3.6-10.4)

Table I. Demographics of the study population*.

* Data are given as mean ± SD, [median] and (range).  
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the Myo+SelMet combination (median: -29 and 
-29%; mean ± SD: -21.5±20.5 and -25.8± 21.4%). 
Of note, the combination showed the highest in-
ter-individual variability, while Myo showed the 
lowest one. 

In the HT group, the decrease in viable PBMC 
number was somewhat less evident than in the 
healthy group (Figure 1, right panel). This was 
particularly true for SelMet, which only at the 
highest concentration was barely more cytotoxic 
than H2O2 alone. It was confirmed that the com-
bination showed the highest inter-individual var-
iability, while Myo showed the lowest one. Only 
upon removing an outlier patient, at last one con-
centration of Myo+SelMet was borderline signif-
icantly lower compared to both H2O2 alone and 
baseline (p = 0.10 to p = 0.016).

In the presence of H2O2, vitality as measured 
by the resazurin test was 94.2 ± 11.2% of baseline 

(corresponding to a mean decrease of 5.8%) in the 
healthy group, and 93.2 ± 9.5 (corresponding to 
a mean decrease of 6.8%) in the HT group (data 
not shown). Because of a fewer number of women 
in the healthy group, only the decrease in the HT 
was significant (p = 0.01). With additions, vitality 
improved with a mean increase of approximately 
5% to 15% over baseline, and with no superior-
ity of the Myo+SelMet combination over either 
Myo alone or SelMet alone. For the same reason 
as above, changes over H2O2 alone were statis-
tically more significant in the HT group than in 
the healthy group (up to p < 0.0001 vs. up to p = 
0.004) (data not shown).

 
Nuclear Damage (Genotoxicity)

The addition of 200 µM H2O2 was sufficient-
ly dangerous for the nuclear integrity (Figure 2). 
Such genotoxicity at this concentration of H2O2 

Figure 1. Proliferation of peripheral blood monocytes (PBMC) from three healthy women (left panel) or eight women with 
Hashimoto’s thyroiditis (right panel) at baseline (no addition whatsoever), in the presence of 200 µM H2O2 alone or 200 µM H2O2 
plus one at a time of these three additions: L-selenomethionine (SelMet), myo-inositol (Myo) or combination of Myo+ SelMet. The 
additions were tested at these equimolar final concentrations: 0.25, 0.5 or 1.0 µM; for Myo+SelMet concentrations were 0.25+0.25 
µM, 0.5+0.5 µM or 1.0+1.0 µM. Data are percent change in the number of cells per well after 5 days of culture with respect to base-
line, baseline being zero. Data are illustrated as mean ± SD (circles). Not to overload the graphs, only statistically significant (p < 0.05 
minimum) and borderline significant differences (p-values between 0.05 and 0.10) are given. p-values written below the zero line re-
fer to the comparison with baseline, while p-values above the zero line refer to the comparison with 200 µM H2O2 alone.
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was expected based on literature (see General out-
lines of the experiments, in Patients and Methods). 
The relatively narrow range between 0.25 and 1.0 
µM dose of the tested compounds was sufficient to 
appreciate that these compounds were exerting a 
dose-dependent protection from H2O2 (Figure 2). 
Thus, we used this range of concentrations also for 
the experiments on chemokines (see below). 

The Comet score at baseline was similar in the 
healthy subjects and HT patients (21.5 and 19.4, 
respectively). Addition of 200 µM H2O2 increased 
the Comet score (and therefore genotoxicity) to 
130 (+505%) in the healthy group (Figure 2, left 
panel) and to a greater extent (156.1, or +707%) 
in the HT group (Figure 2, right panel), with a 
p-value < 0.0001 in either group. Also statistically 
different compared to H2O2 alone were all con-
centrations of all three additions in either group. 
In the healthy women, SelMet was the most po-

tent antagonist of H2O2, with a Comet score that 
increased to 263%, 170% and 81.4% above base-
line at 0.25, 0.5 and 1.0 µM. The corresponding 
changes for Myo alone were +370%, +226% and 
+151%, while those for the Myo+SelMet combi-
nation (0.25+0.25 µM, 0.5+0.5 µM, and 1.0+1.0 
µM) were +286%, +202% and +105%. In the 
HT group, it was confirmed that Myo alone was 
the least effective (+341%, +274% and +143%), 
whereas SelMet alone (+281%, +201%, and +81%) 
and Myo+SelMet (+300%, +185%, and +85%) 
were practically equipotent.

Cell Medium Concentrations
 of Chemokines in Healthy Women

The response of chemokines to the three ad-
ditions (each addition in the presence of the fixed 
concentration of 200 µM H2O2) differed among 
chemokines, both in the healthy group (Figure 3, 

Figure 2. Genotoxicity (as indicated by Comet core plotted on the vertical axis) of peripheral blood monocytes (PBMC) from three 
healthy women (left panel) or eight women with Hashimoto’s thyroiditis (right panel) at baseline (no addition whatsoever), in the 
presence of 200 µM H2O2 alone or 200 µM H2O2 plus one at a time of these three additions: L-selenomethionine (SelMet), myo-inosi-
tol (Myo) or combination of Myo+ SelMet. The additions were tested at these equimolar final concentrations: 0.25, 0.5 or 1.0 µM; for 
Myo+SelMet concentrations were 0.25+0.25 µM, 0.5+0.5 µM or 1.0+1.0 µM. Note the similar basal genotoxicity in the two groups 
of women, and the greater genotoxicity induced by 200 µM H2O2 alone in the thyroiditis group. Also note the evident dose-depen-
dent protection conferred by all three additions in either group (the Myo alone addition being the least potent). By extrapolation of 
the curves in either group, a return to basal genotoxicity is expected at approximately 1.25 µM SelMet alone, 1.25 µM SelMet+1.25 
µM Myo, or 1.4 Myo alone. 
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white circles) and in the HT group (Figure 3, black 
circles; see next heading). CXCL10 was the chemok-
ine that was released with the greatest abundance 
in response to the addition of H2O2 alone (Figure 3, 
dotted horizontal lines). As can be deduced from 
inspection of Figure 4 (left panel), there was a large 
variability in individual responses to H2O2 alone 
and, especially, in individual response of chemok-
ines. Overall, there was an evident dose-dependent 
fall for all chemokines, but only under SelMet or 
Myo+SelMet, the decline was more often not only 
below the stressed condition (200 µM H2O2 alone) 
but also below the baseline condition.

Figure 3 shows that CXCL10 decreased alrea-
dy maximally, and by approximately 20% of ba-
seline, at the lowest SelMet concentration with no 

further decline. In contrast, there was a wide do-
se-dependent inhibition with Myo, the maximum 
effect (-25% of the baseline concentration) being 
reached at 1.0 µM. The inhibition was greater in 
the presence of the combination, with a -16% of 
baseline at the intermediate dose and -51% of ba-
seline at the highest dose. 

The profile of CCL2 response was quite diffe-
rent from that of CXCL10 (see above) and CXCL9 
(see below), with little differences among the three 
additions (Figure 3). There was a modest dose-de-
pendency displayed by all three additions, with 
the SelMet curve and the Myo+SelMet curve al-
most overlapping. The greatest decline was at the 
highest concentration of either SelMet alone or 
Myo+SelMet. 

Figure 3. Concentrations of the three indicated chemokines in the medium of peripheral blood monocytes (PBMC) from three 
healthy women (white circles) or eight women with Hashimoto’s thyroiditis (black cirles) in the presence of 200 µM H2O2 plus one 
at a time of these three additions: myo-inositol (Myo), L-selenomethionine (SelMet) or combination of Myo+ SelMet. The addi-
tions were tested at these equimolar final concentrations: 0.25, 0.5 or 1.0 µM; for Myo+SelMet concentrations were 0.25+0.25 µM, 
0.5+0.5 µM or 1.0+1.0 µM. Data (median) are percent change in the chemokine after 5 days of culture with respect to baseline, base-
line (namely, no addition whatsoever) being zero. Median was preferred to mean ± SD because of the large standard deviation, as it 
can be deducted from subsequent Figure. The horizontal dotted lines (two per each chemokine) refer to the change given by adding 
200 µM H2O2 alone. The bottom dotted horizontal line pertains to the healthy group, while the top dotted horizontal line pertains to 
the Hashimoto’s thyroiditis group. Not to overload the graphs, only statistically significant (p < 0.05 minimum) and borderline signif-
icant differences (p-values between 0.05 and 0.10) are given. p-values written vertically refer to the comparison with 200 µM H2O2 
alone, and they are positioned above baseline (zero line) for the thyroiditis group, and below baseline for the healthy group. The P 
values written horizontally refer to significant or borderline significant differences between two chemokines given by the same ad-
dition at the same concentration. For instance, the decrease given by 1.0 µM SelMet alone on CXCL9 concentration was significant-
ly greater (p = 0.025) than on CCL2, while it was statistically similar (p > 0.10) to that on CXCL10 which, in turn, was also statisti-
cally similar to that on CCL2. For p-values, the asterisk indicates that an at least borderline significant difference was obtained if an 
outlier women with Hashimoto’s thyroidits was removed from statistical analysis.
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The profile of CXCL9 resembled partially that 
of CXCL10 for SelMet (-25% of baseline at 0.5 
and 1.0 µM). Myo gave a modest dose-dependent 
inhibition (-28 to -46% of baseline at 0.25 to 1.0 
µM), while Myo+SelMet gave a wider and more 
potent inhibition (-41 to -77%, 0.25 to 1.0 µM).

Evident from Figure 3 is that only for CXCL9 
there was an additive effect (greater inhibition at 
each dose) given by the Myo+SelMet combina-
tion compared to Myo alone and SelMet alone. 

Cell Medium Concentrations 
of Chemokines in HT Patients

The inter-individual variability in chemokine 
responses was even greater than in the healthy 
group (Figure 4). This was particularly true for 
one HT patient (who will be referred to as “the 
outlier” throughout this paper). For instance, the 
CXCL10 response to 200 µM H2O2 alone was al-
most +2000% over baseline, and CXCL10 respon-

se to 0.5 µM Myo+0.5 µM SelMet (in the presence 
of 200 µM H2O2) was approximately +1000% over 
baseline, namely a 50% decline compared to H2O2 
alone. As shown before for proliferation (Figure 
2), omitting this outlier from statistical analysis al-
lowed to reach at least borderline significant p va-
lues for comparisons concerning chemokines. 

For CXCL10, only 0.5 and 1.0 µM SelMet gave 
an inhibition that approached the corresponding 
inhibition observed in the healthy subjects (Figu-
re 3). With Myo, the curve was superimposable to 
that observed for the healthy subjects (Figure 3). 
With the Myo+SelMet combination, the curve was 
slightly shifted to the right, indicating a lesser de-
gree of inhibition compared to the healthy subjects.

For CCL2, an inhibition was detected, and in the 
hierarchical order Myo+SelMet> Myo alone> Sel-
Met alone (-31%, -15%, -9% of baseline). Only Myo 
showed a greater potency over the healthy women, 
at least at the two highest doses (0.5 and 1.0 µM). 

Figure 4. Concentrations of the three indicated chemokines in the medium of peripheral blood monocytes (PBMC) from three 
healthy women (left panel) or eight Hashimoto’s thyroidtis women (right panel) in the absence (baseline, zero line), in the presence of 
200 µM H2O2 alone or 200 µM H2O2 plus one at a time of these three additions: L-selenomethionine (SelMet), myo-inositol (myo) or 
combination of Myo+SelMet. To maximize data, concentrations were pooled and considered as one. Data are percent change in the 
chemokine concentration after 5 days of culture with respect to baseline (baseline = zero). Data are illustrated as mean ± SD (black 
circles). Not to overload the graphs, only statistically significant (p < 0.05 minimum) and borderline significant differences (p-val-
ues between 0.05 and 0.10) are given. The asterisk indicates that an at least borderline significant difference was obtained if an out-
lier women with Hashimoto’s thyroidits was removed from statistical analysis. p-values written vertically refer to the comparison 
with 200 µM H2O2. The p-values written horizontally refer to significant or borderline significant difference between two chemok-
ines given by the same addition. 
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Especially with Myo and the Myo+SelMet combi-
nation, the dose-dependency was wider compared 
to the healthy women. For CXCL9, a wider dose-de-
pendency was evident with all three additions (Figu-
re 3). Only SelMet showed possibly greater potency 
compared to the healthy group. With Myo alone and 
the Myo+SelMet combination, the corresponding 
curve was shifted to the right.

Confirming the pattern observed in the healthy 
group, in the HT group only for CXCL9, there was 
an additive effect (greater inhibition at each dose) 
given by the Myo+SelMet combination compared 
to Myo alone and SelMet alone (Figure 3).

Cell Medium Concentrations 
of Chemokines: Pooled Data 
in Either Group

To maximize data and permit statistics on a 
larger series of numbers, for each chemokine we 
pooled the concentrations given by the three do-
ses of a given addition. 

The results are shown in Figure 4. It is evi-
dent that, for none of the three chemokines, Sel-
Met alone inhibits more potently in the HT group 
compared to the healthy group. At most, SelMet 
is equipotent (CCL2 and CXCL9). Myo alone 
inhibits relatively more potently in HT patients 
compared to healthy subjects only for CXL10 and 
CCL2, though the decrease in either chemokine 
falls never below baseline. Myo alone exerts a 
stronger inhibition (ie, decline below baseline), 
and in healthy subjects more than in HT patients, 
only for CXCL9. The Myo+SelMet combination 
gives a relatively more potent inhibition, and in 
HT patients more than in healthy subjects, only 
for CXCL10.

Discussion

The therapeutic approach to AITD has also in-
cluded biological agents50,51 but, as already men-
tioned in the Introduction, there is an increasing 
interest for a nutraceutical approach39-45 and, more 
recently, dietary approach52.

In one randomized, placebo-controlled study41, 
77 TPOAb +ve women received 200 µg/d SelMet 
from the first trimester of pregnancy through 1 
year postpartum, while 74 TPOAb +ve women 
received placebo. Starting at the third trimester, 
the SelMet group had significantly lower TPOAb 
levels and, during postpartum, significantly lower 
rates of postpartum thyroid dysfunction (inclu-
ding permanent hypothyroidism) and significant 

amelioration of ultrasonographic signs of thyroi-
ditis41. Of interest is also the randomized, 6-month 
duration study on 48 women with HT-associated 
subclinical hypothyroidism who received SelMet 
alone (83 µg/d) or SelMet (83 µg/d) plus Myo (600 
mg/d)43. Women were selected for having serum 
TSH between 4.01 and 9.99 mU/L, high levels 
(>350 U/ml) of TPOAb and/or TgAb and the typi-
cal thyroid hypoechogenicity at neck ultrasono-
graphy. At baseline, serum levels of TSH, TgAb, 
TPOAb and selenium were comparable in the two 
groups, and so were selenium levels at 6 months. 
However, rates of fall of both TgAb and TPOAb, 
and rates of thyroid hypoechogenicity impro-
vement were greater in the Myo+SelMet group. 
TSH decreased by one-third in the Myo+SelMet 
group, which cannot be compared with the Sel-
Met group, as it was not measured in this group. 

In the first study41, serum selenium increased 
by approximately 40% compared to baseline (≈ 
110 µg/L [1.4 µM] compared to 81 [1.0 µM]) in 
the supplemented women, while it remained un-
changed in the nonsupplemented women (≈78 
µg/L [1.0 µM]. In the second study43, plasma sele-
nium increased by 74% in the Myo+SelMet group 
(225.4 µg/L [2.85 µM]) compared to baseline 
(129.2 µg/L [1.6 µM]), while plasma Myo increa-
sed by 68% (37.3 µM compared to baseline levels 
of 22.2 µM). In the animal study summarized 
below53, selenium-supplemented mice had serum 
levels of selenium 20% greater than unsupple-
mented mice (285 µg/L [3.6 µM] vs 237 µg/L [3.0 
µM]. Thus, the 0.25 to 1.0 µM concentrations of 
SelMet (corresponding to 0.1 to 0.4 µM selenium) 
or Myo to which PBMC were exposed in our in 
vitro experiments are not supraphysiologic. 

Each of the three fundamental AITD (GD, HT 
and postpartum thyroiditis) is widely heteroge-
neous3,26. For instance, HT can present with tran-
sient thyrotoxicosis at one extreme or with overt 
thyroid failure at the other extreme, with euthyroi-
dism and subclinical hypothyroidism in-between. 
The thyroid gland from HT patient can be large 
with or without nodules at one extreme or atrophic 
at the other extreme. Both thyroid autoantibodies 
(TgAb, TPOAb) can be enormously elevated at 
one extreme or both be undetectable at the other 
extreme. Thus, it is not unexpected that any given 
evaluated index will vary widely among indivi-
duals with the same AITD.

In the present study, we have shown that when 
PBMC are exposed to oxidative stress (as the 
one classically induced by H2O2), any of the an-
ti-oxidants we tested (Myo alone, SelMet alone 
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or their combination, each in the range 0.25 to 1.0 
µM) antagonizes H2O2 except for cell survival. 
In fact, all three antioxidant additions caused a 
further decrease in survival. If the same decline 
in lymphocyte population occurs in the thyroid, 
then this decline should be considered a benefi-
cial response (that is, decreased mass of the lym-
phocytic infiltrate). In this context, it is pertinent 
to mention results obtained in the NOD.H-2h4 
mice, which are used as an experimental model 
of autoimmune thyroiditis because they develop it 
when given iodide in drinking water53. Compared 
with untreated mice, a decrease of both the lym-
phocyte infiltrates (-33%), thyroid weight (-26%) 
and serum concentrations of TgAb (-23%) were 
observed upon administration of selenium in the 
drinking water for 16 weeks53. Finally, the percen-
tages of CD4+CD25+Foxp3+ T cells were increa-
sed by one-third (3.24 ± 0.48 vs 2.48 ± 0.40%, re-
spectively, p = 0.001), and the expression of Foxp3 
mRNA was doubled (1.50 ± 0.66 vs. 0.77 ± 0.37, p 
= 0.011) in the selenium-treated mice as compared 
with the untreated mice. These two last data are 
relevant because CD4+CD25+ regulatory T lym-
phocytes (Treg cells), the development of which 
is programmed by the transcription factor Foxp3, 
contribute to the prevention of autoimmunity53. 
The same mechanisms as those reported in mice53 
are likely to have occurred in the women treated 
with SelMet41 or Myo+SelMet43, in order to ac-
count for the decreased thyroid hypoechogenicity 
and thyroid Ab levels. Several studies reported 
that experimental mice develop multi-organ in-
flammation and autoimmune diseases, including 
thyroiditis, after injection of antiCD25 Ab or 
knock out of Foxp353. Thus, many autoimmune 
diseases could be prevented or suppressed by the-
rapy that increases the number or function of Treg 
cells53. 

In one companion paper on 21 euthyroid HT 
women who received SelMet+ Myo (660 mg+83 
µg) twice a day for 6 months54, we report that 
TgAb, TPOAb, TSH, and CXCL10 decreased by 
61%, 45%, 33% and 26%. Remarkably, this 26% 
reduction of CXCL10 agrees with the mean 31% 
fall over baseline (median = 27%) in the concentra-
tion of CXCL10 in the medium of HT PBMC cul-
tured in the presence of 1.0 µM Myo+1.0 µM Sel-
Met. Because of the minimal differences in PBMC 
viability between the healthy women and the HT 
women in the present in vitro study, the overtly ap-
preciable differences in chemokine changes brou-
ght about by PBMC exposure to the antioxidants 
that we tested, and the time (5 days) elapsed to per-

mit measuring the chemokines in the cell medium, 
suggest that these compounds are likely acting at a 
gene-expression level by down-regulating the cor-
responding genes. However, there was no appre-
ciable improvement in thyroid hypoechogenicity54. 
This last finding can be explained by the marked 
interindividual variability among HT patients for 
various indices, as supported by the data reported 
here in the PBMC indices. 

Conclusions

There are some obvious ramifications for futu-
re research that stem from the present study. First, 
we wish to confirm results on a larger cohort of 
HT and healthy controls, and measure simultane-
ously both the in vitro outcomes reported here on 
PBMC and the in vivo outcomes reported by Fer-
rari et al54. Second, we can expand the outcomes 
to include TgAb and TPOAb levels in the medium 
of cultured PBMC. This is feasible, since literature 
exists on assay of these Ab from PBMC both un-
der natural conditions and at stimulated/inhibited 
conditions. PBMC from patients with AITD (GD 
and HT) or healthy controls55-58 were studied. In 
one such study on HT patients55, a direct correla-
tion was found between serum titers of microsomal 
Ab (now termed TPOAb) and in vitro secretion of 
microsomal Ab by PBMC. Thus, at a practically 
translational level, assuming that PBMC would 
mirror thyroid-infiltrating lymphocytes, one can 
test in vitro the response of PBMC to SelMet, or 
Myo+SelMet in terms of proliferation, chemokine 
secretion and TgAb and TPOAb. Only upon evi-
dence of significant inhibition of these indices in 
vitro on PBMC of a given patient, the physician 
would endorse patient-tailored supplementation 
with a reasonable expectation of decreasing thyroid 
lymphocytic infiltration, circulating thyroid Ab le-
vels, intrathyroid and circulating chemokines, and 
circulating TSH as well. Third, as PBMC outco-
mes declined also in our healthy group, SelMet 
or Myo+SelMet supplementation could be given 
to consanguineous relatives of HT patients who 
have not developed HT yet. Also, this prophylaxis 
can be performed on a personalized basis. Fourth, 
there is literature59-64 on the association of HT or 
GD with differentiated thyroid cancer, particularly 
the papillary histotype, the increased risk for the 
associated malignancy being conferred by certain 
cytokines and, given the physiologic stimulus on 
thyrocyte proliferation, by serum TSH in the upper 
tertiles or quartiles of the normal range. 
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In summary, there is now experimental and 
clinical ground for the Myo+SelMet use in the 
clinical setting of AITD. Based on future studies 
stemming from the pilot study reported here, it is 
hoped that assessment of the in vitro responses to 
PBMC Myo+SelMet could predict clinically rele-
vant outcomes on an individual basis. A long-term 
beneficial outcome might be protection against the 
oncogenic potential of the thyrocytes in the back-
ground of coexisting autoimmune thyroiditis.
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